40 resultados para disaster recovery
em Indian Institute of Science - Bangalore - Índia
Resumo:
Ad hoc networks are being used in applications ranging from disaster recovery to distributed collaborative entertainment applications. Ad hoc networks have become one of the most attractive solution for rapid deployment of interconnecting large number of mobile personal devices. The user community of mobile personal devices are demanding a variety of value added multimedia entertainment services. The popularity of peer group is increasing and one or some members of the peer group need to send data to some or all members of the peer group. The increasing demand for group oriented value added services is driving for efficient multicast service over ad hoc networks. Access control mechanisms need to be deployed to provide guarantee that the unauthorized users cannot access the multicast content. In this paper, we present a topology aware key management and distribution scheme for secure overlay multicast over MANET to address node mobility related issues for multicast key management. We use overlay approach for key distribution and our objective is to keep communication overhead low for key management and distribution. We also incorporate reliability using explicit acknowledgments with the key distribution scheme. Through simulations we show that the proposed key management scheme has low communication overhead for rekeying and improves the reliability of key distribution.
Resumo:
Extensive molecular dynamics (MD) simulations have been performed in a B2-NiAl nanowire using an embedded atom method (EAM) potential. We show a stress induced B2 -> body-centered-tetragonal (BCT) phase transformation and a novel temperature and cross-section dependent pseudo-elastic/pseudo-plastic recovery from such an unstable BCT phase with a recoverable strain of similar to 30% as compared to 5-8% in polycrystalline materials. Such a temperature and cross-section dependent pseudo-elastic/pseudo-plastic strain recovery can be useful in various interesting applications of shape memory and strain sensing in nanoscale devices. Effects of size, temperature, and strain rate on the structural and mechanical properties have also been analyzed in detail. For a given size of the nanowire the yield stress of both the B2 and the BCT phases is found to decrease with increasing temperature, whereas for a given temperature and strain rate the yield stress of both the B2 and the BCT phase is found to increase with increase in the cross-sectional dimensions of the nanowire. A constant elastic modulus of similar to 80 GPa of the B2 phase is observed in the temperature range of 200-500 K for nanowires of cross-sectional dimensions in the range of 17.22-28.712 angstrom, whereas the elastic modulus of the BCT phase shows a decreasing trend with an increase in the temperature.
Resumo:
We discuss the inverse problem associated with the propagation of the field autocorrelation of light through a highly scattering object like tissue. In the first part of the work, we reconstructed the optical absorption coefficient mu(u) and particle diffusion coefficient D-B from simulated measurements which are integrals of a quantity computed from the measured intensity and intensity autocorrelation g(2)(tau) at the boundary. In the second part we recover the mean square displacement (MSD) distribution of particles in an inhomogeneous object from the sampled g(2)(tau) measure on the boundary. From the MSD, we compute the storage and loss moduli distributions in the object. We have devised computationally easy methods to construct the sensitivity matrices which are used in the iterative reconstruction algorithms for recovering these parameters from the measurements. The results of the reconstruction of mu(a), D-B, MSD and the viscoelastic parameters, which are presented, show reasonable good position and quantitative accuracy.
Resumo:
Low frequency fluctuations in the electrical resistivity, or noise, have been used as a sensitive tool to probe into the temperature driven martensite transition in dc magnetron sputtered thin films of nickel titanium shape-memory alloys. Even in the equilibrium or static case, the noise magnitude was more than nine orders of magnitude larger than conventional metallic thin films and had a characteristic dependence on temperature. We observe that the noise while the temperature is being ramped is far larger as compared to the equilibrium noise indicating the sensitivity of electrical resistivity to the nucleation and propagation of domains during the shape recovery. Further, the higher order statistics suggests the existence of long range correlations during the transition. This new characterization is based on the kinetics of disorder in the system and separate from existing techniques and can be integrated to many device applications of shape memory alloys for in-situ shape recovery sensing.
Resumo:
A major limitation to progress in primate embryology is the lack of an adequate supply of preimplantation embryos. We describe a method for recovering preimplantation-embryos in bonnet monkeys (Macaca radiata ) using a nonsurgical uterine flushing technique similar to the one previously employed in rhesus monkeys. Forty cyclic females were screened for cervical cannulation, and 10% of these had an impassable cervix. Eleven females suitable for cannulation were selected, and 27 menstrual cycles were monitored over a 5-mo period. Seventy-one percent of the cycles showed estrogen peaks, which were observed between Days 9 and 14 of the cycle. Following natural mating, uterine flushings were performed on Days 5 to 8 of pregnancy (Day 0 = the day following the estrogen peak). Of the 27 recovery attempts, 9 (33.3%) resulted in the recovery of ovulation products, including those of an unfertilized oocyte and empty zona (2 cases), retarded cleavage-stage (4 to 8-cell) embryos (4 cases), morula (1 case) and blastocysts (2 cases). These results show, for the first time, that the nonsurgical uterine flushing technique can be successfully performed to recover uterine-stage preimplantation embryos from bonnet monkeys.
Resumo:
Seismic microzonation has generally been recognized as the most accepted tool in seismic hazard assessment and risk evaluation. In general, risk reduction can be done by reducing the hazard, the vulnerability or the value at risk. Since the earthquake hazard can not be reduced, one has to concentrate on vulnerability and value at risk. The vulnerability of an urban area / municipalities depends on the vulnerability of infrastructure and redundancies within the infrastructure. The earthquake risk is the damage to buildings along with number of people that are killed / hurt and the economic losses during the event due to an earthquake with a return period corresponding to this time period. The principal approaches one can follow to reduce these losses are to avoid, if possible, high hazard areas for the siting of buildings and infrastructure, and further ensure that the buildings and infrastructure are designed and constructed to resist expected earthquake loads. This can be done if one can assess the hazard at local scales. Seismic microzonation maps provide the basis for scientifically based decision-making to reduce earthquake risk for Govt./public agencies, private owners and the general public. Further, seismic microzonation carried out on an appropriate scale provides a valuable tool for disaster mitigation planning and emergency response planning for urban centers / municipalities. It provides the basis for the identification of the areas of the city / municipality which are most likely to experience serious damage in the event of an earthquake.
Resumo:
We describe a noniterative method for recovering optical absorption coefficient distribution from the absorbed energy map reconstructed using simulated and noisy boundary pressure measurements. The source reconstruction problem is first solved for the absorbed energy map corresponding to single- and multiple-source illuminations from the side of the imaging plane. It is shown that the absorbed energy map and the absorption coefficient distribution, recovered from the single-source illumination with a large variation in photon flux distribution, have signal-to-noise ratios comparable to those of the reconstructed parameters from a more uniform photon density distribution corresponding to multiple-source illuminations. The absorbed energy map is input as absorption coefficient times photon flux in the time-independent diffusion equation (DE) governing photon transport to recover the photon flux in a single step. The recovered photon flux is used to compute the optical absorption coefficient distribution from the absorbed energy map. In the absence of experimental data, we obtain the boundary measurements through Monte Carlo simulations, and we attempt to address the possible limitations of the DE model in the overall reconstruction procedure.
Resumo:
Fermentable components of municipal solid wastes (MSW) such as fruit and vegetable wastes (FVW), leaf litter, paddy straw, cane bagasse, cane trash and paper are generated in large quantities at various pockets of the city. These form potential feedstocks for decentralized biogas plants to be operated in the vicinity. We characterized the fermentation potential of six of the above MSW fractions for their suitability to be converted to biogas and anaerobic compost using the solid-state stratified bed (SSB) process in a laboratory study. FVW and leaf litter (papermulberry leaves) decomposed almost completely while paddy straw, sugarcane trash, sugarcane bagasse and photocopying paper decomposed to a lower extent. In the SSB process between 50-60% of the biological methane potential (BMP) could be realized. Observations revealed that the SSB process needs to be adapted differently for each of the feedstocks to obtain a higher gas recovery. Bagasse produced the largest fraction of anaerobic compost (fermentation residue) and has the potential for reuse in many ways.
Resumo:
Feature track matrix factorization based methods have been attractive solutions to the Structure-front-motion (Sfnl) problem. Group motion of the feature points is analyzed to get the 3D information. It is well known that the factorization formulations give rise to rank deficient system of equations. Even when enough constraints exist, the extracted models are sparse due the unavailability of pixel level tracks. Pixel level tracking of 3D surfaces is a difficult problem, particularly when the surface has very little texture as in a human face. Only sparsely located feature points can be tracked and tracking error arc inevitable along rotating lose texture surfaces. However, the 3D models of an object class lie in a subspace of the set of all possible 3D models. We propose a novel solution to the Structure-from-motion problem which utilizes the high-resolution 3D obtained from range scanner to compute a basis for this desired subspace. Adding subspace constraints during factorization also facilitates removal of tracking noise which causes distortions outside the subspace. We demonstrate the effectiveness of our formulation by extracting dense 3D structure of a human face and comparing it with a well known Structure-front-motion algorithm due to Brand.
Resumo:
The accidental discovery of a cell with haploid number of diplochromosomes in squashes of colchicine-treated root tips led to a search for haploid anaphases in treated roots allowed to recover in water. No haploid anaphases were seen. Apart from the divisional stages of diploid and tetraploid nuclei, cells with two pro-, meta- and ana-phases were observed. The formation of distinct cell boundaries by each nucleus of an originally multinucleate cell indicates their potentialities in this direction.
Resumo:
In this paper, we describe an efficient coordinated-checkpointing and recovery algorithm which can work even when the channels are assumed to be non-FIFO, and messages may be lost. Nodes are assumed to be autonomous, and they do not block while taking checkpoints. Based on the local conditions, any process can request the previous coordinator for the 'permission' to initiate a new checkpoint. Allowing multiple initiators of checkpoints avoids the bottleneck associated with a single initiator, but the algorithm permits only a single instance of checkpointing process at any given time, thus reducing much of the overhead associated with multiple initiators of distributed algorithms.
Resumo:
A commercial acrylic fiber with 92% (w/w) acrylonitrile content was partially hydrolyzed converting a fraction of the nitrile (-CN) groups to carboxylic acid (-COOH) groups, to coat the fiber with polyethylenimine (PEI) resin, which was then crosslinked with glutaraldehyde and further quaternized with ethyl chloroacetate to produce a novel strong-base anionic exchanger in the form of fiber. Designated as PAN(QPEI.XG)(Cl-), the fibrous sorbent was compared with a commercial bead-form resin Amberlite IRA-458(Cl-) in respect of sorption capacity, selectivity, and kinetics for removal of silver thiosulfate complexes from aqueous solutions. Though the saturation level of [Ag(S2O3)(2)](3-) on PAN(QPEI.XG)(Cl-) is considerably less than that on IRA-458(Cl-), the gel-coated fibrous sorbent exhibits, as compared to the bead-form sorbent, a significantly higher sorption selectivity for the silver thiosulfate complex in the presence of excess of other anions Such as S2O32-, SO42-, and Cl-, and a remarkably faster rate of both sorption and stripping. The initial uptake of the sorbate by the fibrous sorbent is nearly instantaneous, reaching up to similar to 80% of the saturation capacity within 10 s, as compared to only similar to 12% on the bead-form sorbent. The high initial rate of uptake fits a shell-core kinetic model for sorption on fiber of cylindrical geometry. With 4M HCl, the stripping of the sorbed silver complex from the fibrous sorbent is clean and nearly instantaneous, while, in contrast, a much slower rate of stripping on the bead-form sorbent leads to its fouling due to a slow decomposition of the silver thiosulfate complex in the acidic medium.
Resumo:
Studies have been carried out to recover copper from vanadiferrous magnetite ores by a novel reaction with lime in the presence of water vapour. The ore, mixed with different proportions of lime, has been roasted in the presence of steam. The roasted product is either directly leached with dilute mineral acids or subjected to magnetic separation and then leached. The effect of various parameters such as amount of lime added, temperature and duration of roasting and time of leaching on the recovery of copper has been investigated. The results indicate that over 90% copper could be recovered under optimum conditions of roasting and leaching.
Resumo:
1. Recovery of rainforest bird community structure and composition, in relation to forest succession after slash-and-burn shifting cultivation or jhum was studied in Mizoram, north-east India. Replicate fallow sites abandoned after shifting cultivation 1, 5, 10, 25 and approximate to 100 years ago, were compared with primary evergreen and semi-evergreen forest using transect and quadrat sampling. 2. Vegetation variables such as woody plant species richness, tree density and vertical stratification increased with fallow age in a rapid. nun-linear, asymptotic manner. Principal components analysis of vegetation variables summarized 92.8% of the variation into two axes: PC1 reflecting forest development and woody plant succession (variables such as tree density, woody plant species richness), and PC2 depicting bamboo density, which increased from 1 to 25 years and declined thereafter. 3. Bird species richness, abundance and diversity, increased rapidly and asymptotically during succession paralleling vegetation recovery as shown by positive correlations with fallow age and PC1 scores of sites. Bamboo density reflected by PC2 had a negative effect on bird species richness and abundance. 4. The bird community similarity (Morisita index) of sites with primary forest also increased asymptotically with fallow age indicating sequential species turnover during succession. Bird community similarity of sites with primary forest (or between sites) was positively correlated with both physiognomic and floristic similarities with primary forest (or between sites). 5. The number of bird species in guilds associated with forest development and woody plants (canopy insectivores, frugivores: bark feeders) was correlated with PCI scores of the sites. Species in other guilds (e. g. granivores, understorey insectivores) appeared to dominate during early and mid-succession. 6. The non-linear relationships imply that fallow periods less than a threshold of 25 years for birds, and about 50-75 years for woody plants, are likely to cause substantial community alteration. 7. As 5-10-year rotation periods or jhum cycles prevail in many parts of north-east India. there is a need to protect and conserve tracts of late-successional and primary forest.
Resumo:
Denial-of-service (DoS) attacks form a very important category of security threats that are prevalent in MIPv6 (mobile internet protocol version 6) today. Many schemes have been proposed to alleviate such threats, including one of our own [9]. However, reasoning about the correctness of such protocols is not trivial. In addition, new solutions to mitigate attacks may need to be deployed in the network on a frequent basis as and when attacks are detected, as it is practically impossible to anticipate all attacks and provide solutions in advance. This makes it necessary to validate the solutions in a timely manner before deployment in the real network. However, threshold schemes needed in group protocols make analysis complex. Model checking threshold-based group protocols that employ cryptography have not been successful so far. Here, we propose a new simulation based approach for validation using a tool called FRAMOGR that supports executable specification of group protocols that use cryptography. FRAMOGR allows one to specify attackers and track probability distributions of values or paths. We believe that infrastructure such as FRAMOGR would be required in future for validating new group based threshold protocols that may be needed for making MIPv6 more robust.