8 resultados para direttiva, 93, 42, CEE, s.m.i.

em Indian Institute of Science - Bangalore - Índia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

(I): Mr= 168, triclinic, P1, Z=2, a= 5.596 (2), b = 6.938 (3), c = 10.852 (4) A, ~t= 75.64 (3), fl= 93.44 (3), ),= 95.47 (3) °, V= 406.0A 3, Din= 1.35 (by flotation using carbon tetrachloride and n-hexane), D x= 1.374 Mg m -3, g(Mo Kct, 2 = 0.7107 A) = 1.08 cm -l, _F(000) = 180, T= 293 K. (II): Mr= 250, triclinic, P1, Z= 2, a = 7.731(2), b=8.580(2), c=11.033(3)A, a= 97-66 (2), fl= 98.86 (2), y= 101.78 (2) °, V= 697.5 A 3, D m = 1.18 (by flotation using KI solution), Dx= 1.190Mgm -3, g(MoKa, 2=0.7107A)= 1.02 cm -1, F(000) = 272, T= 293 K. Both structures were solved by direct methods and refined to R = 4.4% for 901 reflexions for (I) and 5.7% for 2001 reflexions for (II). The C=C bond distances are 1.451 (3) A in (I) and 1.468 (3)A in (II), quite significantly longer than the C=C bond in ethylene [1.336 (2).~; Bartell, Roth, Hollowell, Kuchitsu & Young (1965). J. Chem. Phys. 42, 2683-2686]. The twist angle about the C=C bond in (II) is 72.9 (5) ° but molecule (I) is essentially planar, the twist angle being only 4.9 (5) ° .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A partially purified sheep liver enzyme that hydrolyzed dinucleotides at the pyrophosphate bond was obtained by solubilizing the 18,000g sediment with n-butanol and fractionating the solubilized enzyme with acetone. The enzyme activity when measured using FAD as substrate, (FAD → FMN + AMP), was optimal at pH 9.7 and temperatures between 30 °–36 ° and at 60 °. The rate of release of FMN with time occurred with an initial lag of 30 sec, a linear increase for 1 min, and a subsequent irregular rate. In the presence of orthophosphate (Pi; 10 μImage ), FMN was released at an uniformly continuous and enhanced rate. 32Pi was not incorporated into the substrate or products. Sodium arsenate counteracted the effects of Pi. The apparent Km and Vmax were 0.133 mImage and 100 units; and 0.133 mImage and 200 units, in the absence and presence of Pi, respectively. The temperature optimum was 42 ° in the presence of Pi.Negative cooperative interactions observed at low concentrations of FAD were abolished by the addition of Pi. The inhibition by AMP was sigmoid and Pi abolished this sigmoidal response. The enzyme hydrolyzed in addition to FAD, NAD+ and NADP+. Nucleoside triphosphates were potent inhibitors of the enzyme activity. The partial inhibition of the enzyme by o-phenanthroline and by p-hydroxymercuribenzoate could be reversed by Fe2+ ions and by reduced glutathione, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proton spin—lattice relaxation time (T1) is measured in [N(CH3)4]PbX3 (X=Cl, Br, I) from 300-77 K at 9.75 MHz. All the compounds show discontinuous changes in T1 values (at 256, 270 and 277 K, respectively), indicating phase transitions. Single T1 minimum is observed in all the cases and the T1 variation is explained in terms of [N(CH3)4] and CH3 group dynamics. The activation energy Eα decreases from chloride to iodide (from 4 to 2 kcal/mol). In bromide and iodide, T1 is found to decrease with increase in temperature at higher temperatures, indicating the presence of spin—rotation interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis, X-ray crystal structure, and magnetic properties of an angular trinuclear copper(II) complex [Cu3(O2CMC)4(bpy)3(H2O)](PF6)2 (1), obtained from a reaction of Cu2(O2CMe)4(H2O)2 With 2,2'-bipyridine (bpy) and NH4PF6 in ethanol, are reported. Complex 1 crystallizes in triclinic space group P1BAR with a = 11.529(1) angstrom, b = 12.121(2) angstrom, c = 17.153(2) angstrom, alpha = 82.01(1)-degrees, beta = 79.42(1)-degrees, gamma = 89.62(1)-degrees, and Z = 2. A total of 6928 data with I > 2.5sigma(I) were refined to R = 0.0441 and R(w) = 0.0557. The structure consists of a trinuclear core bridged by four acetate ligands showing different bonding modes. The coordination geometry at each copper is distorted square-pyramidal with a CuN2O2...O chromophore. The Cu...Cu distances are 3.198(1) angstrom, 4.568(1) angstrom, and 6.277(1) angstrom. There are two monoatomic acetate bridges showing Cu-O-Cu angles of 93.1(1) and 97.5(1)-degrees. Magnetic studies in the temperature range 39-297 K show the presence of a strong ferromagnetically coupled dicopper(II) unit (2J = +158 cm-1) and an essentially isolated copper(II) center (2J' = -0.4 cm-1) in 1. The EPR spectra display an axial spectrum giving g(parallel-to) = 2.28 (A(parallel-to) = 160 X 10(-4) cm-1) and g(perpendicular-to) = 2.06 (A(perpendicular-to) = 12 X 10(-4) cm-1) for the normal copper and two intense isotropic signals with g values 2.70 and 1.74 for the strongly coupled copper pair. The structural features of 1 compare well with the first generation models for ascorbate oxidase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper(I)-dppm complexes encapsulating the oxyanions ClO4-, NO3-, CH3C6H4CO2-, SO42-, and WO42- have been synthesized either by reduction of the corresponding Cu(II) salts and treatment with dppm, or by treating the complex [Cu-2(dppm)(2)(dmcn)(3)](BF4)(2) (1) (dmcn = dimethyl cyanamide) with the respective anion. The isolated complexes [Cu-2(dppm)(2)(dmcn)(2)(ClO4)] (ClO4) (2), [Cu-2(dppm)(2)(dmcn)(2)(NO3)] (NO3) (3), Cu-2(dppm)(2)(NO3)(2) (4), [Cu-2(dppm)(2)(CH3C6H4CO2)(2)]dmcn.2THF (5), Cu-2(dppm)(2)(SO4) (6), and [Cu-3(dppm)(3)(Cl)(WO4)] 0.5H(2)O (7) have been characterized by IR, H-1 and P-31{H-1} NMR, UV-vis, and emission spectroscopy. The solid-state molecular structure of complexes 1, 2, 4, and 7 were determined by single-crystal X-ray diffraction. Pertinent crystal data are as follows: for 1, monoclinic P2(1)/c, a = 11.376(10) Angstrom, b = 42.503(7) Angstrom, c = 13.530(6) Angstrom, beta = 108.08(2)degrees, V = 6219(3) Angstrom(3), Z = 4; for 2, monoclinic P2(1)/c, a = 21.600(3) Angstrom, b = 12.968(3) Angstrom, c = 23.050(3) Angstrom, beta = 115.97(2)degrees, V = 5804(17) Angstrom(3), Z = 4; for 4, triclinic , a = 10.560(4) Angstrom, b = 10.553(3) Angstrom, c = 22.698(3) Angstrom, alpha = 96.08(2)degrees, beta = 96.03(2)degrees, gamma = 108.31(2)degrees, V = 2362(12) Angstrom(3), Z = 2; and for 7, orthorhombic P2(1)2(1)2(1), a = 14.407(4) Angstrom, b = 20.573(7) Angstrom, c = 24.176(6) Angstrom, V = 7166(4) Angstrom(3), Z = 4. Analyses of the crystallographic and spectroscopic data of these complexes reveal the nature of interactions between the Cu-I-dppm core and oxyanion. The anchoring of the oxyanion to the Cu-n(dppm)(n) unit is primarily through coordination to the metal, but the noncovalent C-H ... O interactions between the methylene and phenyl protons of the dppm and oxygen atoms of the oxyanion play a significant role. The solid-state emission spectra for complexes 1-6 are very similar but different from 7. In CDCl3 solution, addition of ClO4- or NO3- (as their tetrabutylammonium salts) to 1 establishes a rapid equilibrium between the anion-complexed and uncomplexed forms. The association constant values for ClO4- and NO3- have been estimated from the P-31{H-1} NMR spectra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental studies were performed to investigate the role and influence of grain movement on macrosegregation and microstructure evolution during equiaxed solidification. Casting experiments were performed with a grain-refined Al-Cu alloy in a rectangular sand mold. For the aluminum alloy studied, the equiaxed grains are lighter than the bulk melt and thus float up. Experiments were designed to investigate floatation phenomena of equiaxed grains in the presence of thermosolutal convection. Cooling curves were recorded at key locations in both the casting and the chill. Quantitative image analysis and spatial chemical analysis were performed on the solidified casting to observe the chemical and microstructural inhomogeneity created by the melt convection and solid floatation. Several notable features that can be attributed to grain movement were observed in temperature histories, macrosegregation patterns, and microstructures. In our experiments, the floatation of grains influences the thermal conditions and the overall flow direction in the casting cavity. In some cases, the induced flow resulting from the grain movement caused a flow reversal. This in turn influences the solidification direction, microstructure evolution, and the overall macrosegregation behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T-cell responses in humans are initiated by the binding of a peptide antigen to a human leukocyte antigen (HLA) molecule. The peptide-HLA complex then recruits an appropriate T cell, leading to cell-mediated immunity. More than 2000 HLA class-I alleles are known in humans, and they vary only in their peptide-binding grooves. The polymorphism they exhibit enables them to bind a wide range of peptide antigens from diverse sources. HLA molecules and peptides present a complex molecular recognition pattern, as many peptides bind to a given allele and a given peptide can be recognized by many alleles. A powerful grouping scheme that not only provides an insightful classification, but is also capable of dissecting the physicochemical basis of recognition specificity is necessary to address this complexity. We present a hierarchical classification of 2010 class-I alleles by using a systematic divisive clustering method. All-pair distances of alleles were obtained by comparing binding pockets in the structural models. By varying the similarity thresholds, a multilevel classification was obtained, with 7 supergroups, each further subclassifying to yield 72 groups. An independent clustering performed based only on similarities in their epitope pools correlated highly with pocket-based clustering. Physicochemical feature combinations that best explain the basis of clustering are identified. Mutual information calculated for the set of peptide ligands enables identification of binding site residues contributing to peptide specificity. The grouping of HLA molecules achieved here will be useful for rational vaccine design, understanding disease susceptibilities and predicting risk of organ transplants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cybernetic modeling framework for the growth of microorganisms provides for an elegant methodology to account for the unknown regulatory phenomena through the use of cybernetic variables for enzyme induction and activity. In this paper, we revisit the assumption of limited resources for enzyme induction (Sigma u(i) = 1) used in the cybernetic modeling framework by presenting a methodology for inferring the individual cybernetic variables u(i) from experimental data. We use this methodology to infer u(i) during the simultaneous consumption of glycerol and lactose by Escherichia coli and then model the fitness trade-offs involved in the recently discovered predictive regulation strategy of microorganisms.