62 resultados para detection systems

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fusion of multiple intrusion detection systems results in a more reliable and accurate detection for a wider class of intrusions. The paper presented here introduces the mathematical basis for sensor fusion and provides enough support for the acceptability of sensor fusion in performance enhancement of intrusion detection systems. The sensor fusion system is characterized and modeled with no knowledge of the intrusion detection systems and the intrusion detection data. The theoretical analysis is supported with an experimental illustration with three of the available intrusion detection systems using the DARPA 1999 evaluation data set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network Intrusion Detection Systems (NIDS) intercept the traffic at an organization's network periphery to thwart intrusion attempts. Signature-based NIDS compares the intercepted packets against its database of known vulnerabilities and malware signatures to detect such cyber attacks. These signatures are represented using Regular Expressions (REs) and strings. Regular Expressions, because of their higher expressive power, are preferred over simple strings to write these signatures. We present Cascaded Automata Architecture to perform memory efficient Regular Expression pattern matching using existing string matching solutions. The proposed architecture performs two stage Regular Expression pattern matching. We replace the substring and character class components of the Regular Expression with new symbols. We address the challenges involved in this approach. We augment the Word-based Automata, obtained from the re-written Regular Expressions, with counter-based states and length bound transitions to perform Regular Expression pattern matching. We evaluated our architecture on Regular Expressions taken from Snort rulesets. We were able to reduce the number of automata states between 50% to 85%. Additionally, we could reduce the number of transitions by a factor of 3 leading to further reduction in the memory requirements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The need for paying with mobile devices has urged the development of payment systems for mobile electronic commerce. In this paper we have considered two important abuses in electronic payments systems for detection. The fraud, which is an intentional deception accomplished to secure an unfair gain, and an intrusion which are any set of actions that attempt to compromise the integrity, confidentiality or availability of a resource. Most of the available fraud and intrusion detection systems for e-payments are specific to the systems where they have been incorporated. This paper proposes a generic model called as Activity-Event-Symptoms(AES) model for detecting fraud and intrusion attacks which appears during payment process in the mobile commerce environment. The AES model is designed to identify the symptoms of fraud and intrusions by observing various events/transactions occurs during mobile commerce activity. The symptoms identification is followed by computing the suspicion factors for event attributes, and the certainty factor for a fraud and intrusion is generated using these suspicion factors. We have tested the proposed system by conducting various case studies, on the in-house established mobile commerce environment over wired and wire-less networks test bed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Various intrusion detection systems (IDSs) reported in the literature have shown distinct preferences for detecting a certain class of attack with improved accuracy, while performing moderately on the other classes. In view of the enormous computing power available in the present-day processors, deploying multiple IDSs in the same network to obtain best-of-breed solutions has been attempted earlier. The paper presented here addresses the problem of optimizing the performance of IDSs using sensor fusion with multiple sensors. The trade-off between the detection rate and false alarms with multiple sensors is highlighted. It is illustrated that the performance of the detector is better when the fusion threshold is determined according to the Chebyshev inequality. In the proposed data-dependent decision ( DD) fusion method, the performance optimization of ndividual IDSs is first addressed. A neural network supervised learner has been designed to determine the weights of individual IDSs depending on their reliability in detecting a certain attack. The final stage of this DD fusion architecture is a sensor fusion unit which does the weighted aggregation in order to make an appropriate decision. This paper theoretically models the fusion of IDSs for the purpose of demonstrating the improvement in performance, supplemented with the empirical evaluation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The MIT Lincoln Laboratory IDS evaluation methodology is a practical solution in terms of evaluating the performance of Intrusion Detection Systems, which has contributed tremendously to the research progress in that field. The DARPA IDS evaluation dataset has been criticized and considered by many as a very outdated dataset, unable to accommodate the latest trend in attacks. Then naturally the question arises as to whether the detection systems have improved beyond detecting these old level of attacks. If not, is it worth thinking of this dataset as obsolete? The paper presented here tries to provide supporting facts for the use of the DARPA IDS evaluation dataset. The two commonly used signature-based IDSs, Snort and Cisco IDS, and two anomaly detectors, the PHAD and the ALAD, are made use of for this evaluation purpose and the results support the usefulness of DARPA dataset for IDS evaluation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The motivation behind the fusion of Intrusion Detection Systems was the realization that with the increasing traffic and increasing complexity of attacks, none of the present day stand-alone Intrusion Detection Systems can meet the high demand for a very high detection rate and an extremely low false positive rate. Multi-sensor fusion can be used to meet these requirements by a refinement of the combined response of different Intrusion Detection Systems. In this paper, we show the design technique of sensor fusion to best utilize the useful response from multiple sensors by an appropriate adjustment of the fusion threshold. The threshold is generally chosen according to the past experiences or by an expert system. In this paper, we show that the choice of the threshold bounds according to the Chebyshev inequality principle performs better. This approach also helps to solve the problem of scalability and has the advantage of failsafe capability. This paper theoretically models the fusion of Intrusion Detection Systems for the purpose of proving the improvement in performance, supplemented with the empirical evaluation. The combination of complementary sensors is shown to detect more attacks than the individual components. Since the individual sensors chosen detect sufficiently different attacks, their result can be merged for improved performance. The combination is done in different ways like (i) taking all the alarms from each system and avoiding duplications, (ii) taking alarms from each system by fixing threshold bounds, and (iii) rule-based fusion with a priori knowledge of the individual sensor performance. A number of evaluation metrics are used, and the results indicate that there is an overall enhancement in the performance of the combined detector using sensor fusion incorporating the threshold bounds and significantly better performance using simple rule-based fusion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we present a low-complexity algorithm for detection in high-rate, non-orthogonal space-time block coded (STBC) large-multiple-input multiple-output (MIMO) systems that achieve high spectral efficiencies of the order of tens of bps/Hz. We also present a training-based iterative detection/channel estimation scheme for such large STBC MIMO systems. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed multistage likelihood ascent search (M-LAS) detector in conjunction with the proposed iterative detection/channel estimation scheme at low complexities. The fact that we could show such good results for large STBCs like 16 X 16 and 32 X 32 STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot based training for channel estimation and turbo coding) establishes the effectiveness of the proposed detector and channel estimator. We decode perfect codes of large dimensions using the proposed detector. With the feasibility of such a low-complexity detection/channel estimation scheme, large-MIMO systems with tens of antennas operating at several tens of bps/Hz spectral efficiencies can become practical, enabling interesting high data rate wireless applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A scheme for the detection and isolation of actuator faults in linear systems is proposed. A bank of unknown input observers is constructed to generate residual signals which will deviate in characteristic ways in the presence of actuator faults. Residual signals are unaffected by the unknown inputs acting on the system and this decreases the false alarm and miss probabilities. The results are illustrated through a simulation study of actuator fault detection and isolation in a pilot plant doubleeffect evaporator.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we propose a training-based channel estimation scheme for large non-orthogonal space-time block coded (STBC) MIMO systems.The proposed scheme employs a block transmission strategy where an N-t x N-t pilot matrix is sent (for training purposes) followed by several N-t x N-t square data STBC matrices, where Nt is the number of transmit antennas. At the receiver, we iterate between channel estimation (using an MMSE estimator) and detection (using a low-complexity likelihood ascent search (LAS) detector) till convergence or for a fixed number of iterations. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed scheme at low complexities. The fact that we could show such good results for large STBCs (e.g., 16 x 16 STBC from cyclic division algebras) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot-based channel estimation and turbo coding) establishes the effectiveness of the proposed scheme.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a low-complexity algorithm based on reactive tabu search (RTS) for near maximum likelihood (ML) detection in large-MIMO systems. The conventional RTS algorithm achieves near-ML performance for 4-QAM in large-MIMO systems. But its performance for higher-order QAM is far from ML performance. Here, we propose a random-restart RTS (R3TS) algorithm which achieves significantly better bit error rate (BER) performance compared to that of the conventional RTS algorithm in higher-order QAM. The key idea is to run multiple tabu searches, each search starting with a random initial vector and choosing the best among the resulting solution vectors. A criterion to limit the number of searches is also proposed. Computer simulations show that the R3TS algorithm achieves almost the ML performance in 16 x 16 V-BLAST MIMO system with 16-QAM and 64-QAM at significantly less complexities than the sphere decoder. Also, in a 32 x 32 V-BLAST MIMO system, the R3TS performs close to ML lower bound within 1.6 dB for 16-QAM (128 bps/Hz), and within 2.4 dB for 64-QAM (192 bps/Hz) at 10(-3) BER.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Large MIMO systems with tens of antennas in each communication terminal using full-rate non-orthogonal space-time block codes (STBC) from Cyclic Division Algebras (CDA) can achieve the benefits of both transmit diversity as well as high spectral efficiencies. Maximum-likelihood (ML) or near-ML decoding of these large-sized STBCs at low complexities, however, has been a challenge. In this paper, we establish that near-ML decoding of these large STBCs is possible at practically affordable low complexities. We show that the likelihood ascent search (LAS) detector, reported earlier by us for V-BLAST, is able to achieve near-ML uncoded BER performance in decoding a 32x32 STBC from CDA, which employs 32 transmit antennas and sends 32(2) = 1024 complex data symbols in 32 time slots in one STBC matrix (i.e., 32 data symbols sent per channel use). In terms of coded BER, with a 16x16 STBC, rate-3/4 turbo code and 4-QAM (i.e., 24 bps/Hz), the LAS detector performs close to within just about 4 dB from the theoretical MIMO capacity. Our results further show that, with LAS detection, information lossless (ILL) STBCs perform almost as good as full-diversity ILL (FD-ILL) STBCs. Such low-complexity detectors can potentially enable implementation of high spectral efficiency large MIMO systems that could be considered in wireless standards.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, we reported a low-complexity likelihood ascent search (LAS) detection algorithm for large MIMO systems with several tens of antennas that can achieve high spectral efficiencies of the order of tens to hundreds of bps/Hz. Through simulations, we showed that this algorithm achieves increasingly near SISO AWGN performance for increasing number of antennas in Lid. Rayleigh fading. However, no bit error performance analysis of the algorithm was reported. In this paper, we extend our work on this low-complexity large MIMO detector in two directions: i) We report an asymptotic bit error probability analysis of the LAS algorithm in the large system limit, where N-t, N-r -> infinity keeping N-t = N-r, where N-t and N-r are the number of transmit and receive antennas, respectively. Specifically, we prove that the error performance of the LAS detector for V-BLAST with 4-QAM in i.i.d. Rayleigh fading converges to that of the maximum-likelihood (ML) detector as N-t, N-r -> infinity keeping N-t = N-r ii) We present simulated BER and nearness to capacity results for V-BLAST as well as high-rate non-orthogonal STBC from Division Algebras (DA), in a more realistic spatially correlated MIMO channel model. Our simulation results show that a) at an uncoded BER of 10(-3), the performance of the LAS detector in decoding 16 x 16 STBC from DA with N-t = = 16 and 16-QAM degrades in spatially correlated fading by about 7 dB compared to that in i.i.d. fading, and 19) with a rate-3/4 outer turbo code and 48 bps/Hz spectral efficiency, the performance degrades by about 6 dB at a coded BER of 10(-4). Our results further show that providing asymmetry in number of antennas such that N-r > N-t keeping the total receiver array length same as that for N-r = N-t, the detector is able to pick up the extra receive diversity thereby significantly improving the BER performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we employ message passing algorithms over graphical models to jointly detect and decode symbols transmitted over large multiple-input multiple-output (MIMO) channels with low density parity check (LDPC) coded bits. We adopt a factor graph based technique to integrate the detection and decoding operations. A Gaussian approximation of spatial interference is used for detection. This serves as a low complexity joint detection/decoding approach for large dimensional MIMO systems coded with LDPC codes of large block lengths. This joint processing achieves significantly better performance than the individual detection and decoding scheme.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we are interested in high spectral efficiency multicode CDMA systems with large number of users employing single/multiple transmit antennas and higher-order modulation. In particular, we consider a local neighborhood search based multiuser detection algorithm which offers very good performance and complexity, suited for systems with large number of users employing M-QAM/M-PSK. We apply the algorithm on the chip matched filter output vector. We demonstrate near-single user (SU) performance of the algorithm in CDMA systems with large number of users using 4-QAM/16-QAM/64-QAM/8-PSK on AWGN, frequency-flat, and frequency-selective fading channels. We further show that the algorithm performs very well in multicode multiple-input multiple-output (MIMO) CDMA systems as well, outperforming other linear detectors and interference cancelers reported in the literature for such systems. The per-symbol complexity of the search algorithm is O(K2n2tn2cM), K: number of users, nt: number of transmit antennas at each user, nc: number of spreading codes multiplexed on each transmit antenna, M: modulation alphabet size, making the algorithm attractive for multiuser detection in large-dimension multicode MIMO-CDMA systems with M-QAM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes an algorithm for joint data detection and tracking of the dominant singular mode of a time varying channel at the transmitter and receiver of a time division duplex multiple input multiple output beamforming system. The method proposed is a modified expectation maximization algorithm which utilizes an initial estimate to track the dominant modes of the channel at the transmitter and the receiver blindly; and simultaneously detects the un known data. Furthermore, the estimates are constrained to be within a confidence interval of the previous estimate in order to improve the tracking performance and mitigate the effect of error propagation. Monte-Carlo simulation results of the symbol error rate and the mean square inner product between the estimated and the true singular vector are plotted to show the performance benefits offered by the proposed method compared to existing techniques.