85 resultados para detection performance

em Indian Institute of Science - Bangalore - Índia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we deal with low-complexity near-optimal detection/equalization in large-dimension multiple-input multiple-output inter-symbol interference (MIMO-ISI) channels using message passing on graphical models. A key contribution in the paper is the demonstration that near-optimal performance in MIMO-ISI channels with large dimensions can be achieved at low complexities through simple yet effective simplifications/approximations, although the graphical models that represent MIMO-ISI channels are fully/densely connected (loopy graphs). These include 1) use of Markov random field (MRF)-based graphical model with pairwise interaction, in conjunction with message damping, and 2) use of factor graph (FG)-based graphical model with Gaussian approximation of interference (GAI). The per-symbol complexities are O(K(2)n(t)(2)) and O(Kn(t)) for the MRF and the FG with GAI approaches, respectively, where K and n(t) denote the number of channel uses per frame, and number of transmit antennas, respectively. These low-complexities are quite attractive for large dimensions, i.e., for large Kn(t). From a performance perspective, these algorithms are even more interesting in large-dimensions since they achieve increasingly closer to optimum detection performance for increasing Kn(t). Also, we show that these message passing algorithms can be used in an iterative manner with local neighborhood search algorithms to improve the reliability/performance of M-QAM symbol detection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Low-complexity near-optimal detection of large-MIMO signals has attracted recent research. Recently, we proposed a local neighborhood search algorithm, namely reactive tabu search (RTS) algorithm, as well as a factor-graph based belief propagation (BP) algorithm for low-complexity large-MIMO detection. The motivation for the present work arises from the following two observations on the above two algorithms: i) Although RTS achieved close to optimal performance for 4-QAM in large dimensions, significant performance improvement was still possible for higher-order QAM (e.g., 16-, 64-QAM). ii) BP also achieved near-optimal performance for large dimensions, but only for {±1} alphabet. In this paper, we improve the large-MIMO detection performance of higher-order QAM signals by using a hybrid algorithm that employs RTS and BP. In particular, motivated by the observation that when a detection error occurs at the RTS output, the least significant bits (LSB) of the symbols are mostly in error, we propose to first reconstruct and cancel the interference due to bits other than LSBs at the RTS output and feed the interference cancelled received signal to the BP algorithm to improve the reliability of the LSBs. The output of the BP is then fed back to RTS for the next iteration. Simulation results show that the proposed algorithm performs better than the RTS algorithm, and semi-definite relaxation (SDR) and Gaussian tree approximation (GTA) algorithms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We address the problem of detecting cells in biological images. The problem is important in many automated image analysis applications. We identify the problem as one of clustering and formulate it within the framework of robust estimation using loss functions. We show how suitable loss functions may be chosen based on a priori knowledge of the noise distribution. Specifically, in the context of biological images, since the measurement noise is not Gaussian, quadratic loss functions yield suboptimal results. We show that by incorporating the Huber loss function, cells can be detected robustly and accurately. To initialize the algorithm, we also propose a seed selection approach. Simulation results show that Huber loss exhibits better performance compared with some standard loss functions. We also provide experimental results on confocal images of yeast cells. The proposed technique exhibits good detection performance even when the signal-to-noise ratio is low.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the formulation and performance analysis of four techniques for detection of a narrowband acoustic source in a shallow range-independent ocean using an acoustic vector sensor (AVS) array. The array signal vector is not known due to the unknown location of the source. Hence all detectors are based on a generalized likelihood ratio test (GLRT) which involves estimation of the array signal vector. One non-parametric and three parametric (model-based) signal estimators are presented. It is shown that there is a strong correlation between the detector performance and the mean-square signal estimation error. Theoretical expressions for probability of false alarm and probability of detection are derived for all the detectors, and the theoretical predictions are compared with simulation results. It is shown that the detection performance of an AVS array with a certain number of sensors is equal to or slightly better than that of a conventional acoustic pressure sensor array with thrice as many sensors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we propose a low-complexity algorithm based on Markov chain Monte Carlo (MCMC) technique for signal detection on the uplink in large scale multiuser multiple input multiple output (MIMO) systems with tens to hundreds of antennas at the base station (BS) and similar number of uplink users. The algorithm employs a randomized sampling method (which makes a probabilistic choice between Gibbs sampling and random sampling in each iteration) for detection. The proposed algorithm alleviates the stalling problem encountered at high SNRs in conventional MCMC algorithm and achieves near-optimal performance in large systems with M-QAM. A novel ingredient in the algorithm that is responsible for achieving near-optimal performance at low complexities is the joint use of a randomized MCMC (R-MCMC) strategy coupled with a multiple restart strategy with an efficient restart criterion. Near-optimal detection performance is demonstrated for large number of BS antennas and users (e.g., 64, 128, 256 BS antennas/users).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we propose low-complexity algorithms based on Monte Carlo sampling for signal detection and channel estimation on the uplink in large-scale multiuser multiple-input-multiple-output (MIMO) systems with tens to hundreds of antennas at the base station (BS) and a similar number of uplink users. A BS receiver that employs a novel mixed sampling technique (which makes a probabilistic choice between Gibbs sampling and random uniform sampling in each coordinate update) for detection and a Gibbs-sampling-based method for channel estimation is proposed. The algorithm proposed for detection alleviates the stalling problem encountered at high signal-to-noise ratios (SNRs) in conventional Gibbs-sampling-based detection and achieves near-optimal performance in large systems with M-ary quadrature amplitude modulation (M-QAM). A novel ingredient in the detection algorithm that is responsible for achieving near-optimal performance at low complexity is the joint use of a mixed Gibbs sampling (MGS) strategy coupled with a multiple restart (MR) strategy with an efficient restart criterion. Near-optimal detection performance is demonstrated for a large number of BS antennas and users (e. g., 64 and 128 BS antennas and users). The proposed Gibbs-sampling-based channel estimation algorithm refines an initial estimate of the channel obtained during the pilot phase through iterations with the proposed MGS-based detection during the data phase. In time-division duplex systems where channel reciprocity holds, these channel estimates can be used for multiuser MIMO precoding on the downlink. The proposed receiver is shown to achieve good performance and scale well for large dimensions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, spectrum sensing for cognitive radios is considered in the presence of multiple Primary Users (PU) using frequency-hopping communication over a set of frequency bands. The detection performance of the Fast Fourier Transform (FFT) Average Ratio (FAR) algorithm is obtained in closed-form, for a given FFT size and number of PUs. The effective throughput of the Secondary Users (SU) is formulated as an optimization problem with a constraint on the maximum allowable interference on the primary network. Given the hopping period of the PUs, the sensing duration that maximizes the SU throughput is derived. The results are validated using Monte Carlo simulations. Further, an implementation of the FAR algorithm on the Lyrtech (now, Nutaq) small form factor software defined radio development platform is presented, and the performance recorded through the hardware is observed to corroborate well with that obtained through simulations, allowing for implementation losses. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper presents a new approach to improve the detection and tracking performance of a track-while-scan (TWS) radar. The contribution consists of three parts. In Part 1 the scope of various papers in this field is reviewed. In Part 2, a new approach for integrating the detection and tracking functions is presented. It shows how a priori information from the TWS computer can be used to improve detection. A new multitarget tracking algorithm has also been developed. It is specifically oriented towards solving the combinatorial problems in multitarget tracking. In Part 3, analytical derivations are presented for quantitatively assessing, a priori, the performance of a track-while-scan radar system (true track initiation, false track initiation, true track continuation and false track deletion characteristics). Simulation results are also shown.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper presents, in three parts, a new approach to improve the detection and tracking performance of a track-while-scan radar. Part 1 presents a review of the current status of the subject. Part 2 details the new approach. It shows how a priori information provided by the tracker can be used to improve detection. It also presents a new multitarget tracking algorithm. In the present Part, analytical derivations are presented for assessing, a priori, the performance of the TWS radar system. True track initiation, false track initiation, true track continuation and false track deletion characteristics have been studied. It indicates how the various thresholds can be chosen by the designer to optimise performance. Simulation results are also presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

he paper presents, in three parts, a new approach to improve the detection and tracking performance of a track-while-scan (TWS) radar. Part 1 presents a review of current status. In this part, Part 2, it is shown how the detection can be improved by utilising information from tracker. A new multitarget tracking algorithm, capable of tracking manoeuvring targets in clutter, is then presented. The algorithm is specifically tailored so that the solution to the combinatorial problem presented in a companion paper can be applied. The implementation aspects are discussed and a multiprocessor architecture identified to realise the full potential of the algorithm. Part 3 presents analytical derivations for quantitative assessment of the performance of the TWS radar system. It also shows how the performance can be optimised.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we present a low-complexity, near maximum-likelihood (ML) performance achieving detector for large MIMO systems having tens of transmit and receive antennas. Such large MIMO systems are of interest because of the high spectral efficiencies possible in such systems. The proposed detection algorithm, termed as multistage likelihood-ascent search (M-LAS) algorithm, is rooted in Hopfield neural networks, and is shown to possess excellent performance as well as complexity attributes. In terms of performance, in a 64 x 64 V-BLAST system with 4-QAM, the proposed algorithm achieves an uncoded BER of 10(-3) at an SNR of just about 1 dB away from AWGN-only SISO performance given by Q(root SNR). In terms of coded BER, with a rate-3/4 turbo code at a spectral efficiency of 96 bps/Hz the algorithm performs close to within about 4.5 dB from theoretical capacity, which is remarkable in terms of both high spectral efficiency as well as nearness to theoretical capacity. Our simulation results show that the above performance is achieved with a complexity of just O(NtNt) per symbol, where N-t and N-tau denote the number of transmit and receive antennas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A highly sensitive and specific reverse transcription polymerase chain reaction enzyme linked immunosorbent assay (RT-PCR-ELISA) was developed for the objective detection of nucleoprotein (N) gene of peste des petits ruminants (PPR) virus from field outbreaks or experimentally infected sheep. Two primers (IndF and Np4) and one probe (Sp3) available or designed for the amplification/probing of the 'N' gene of PPR virus, were chosen for labeling and use in RT-PCR-ELISA based on highest analytical sensitivity of detection of infective virus or N-gene containing recombinant plasmid, higher nucleotide homology at the primer binding sites of the 'N' gene sequences available and the ability to amplify PPR viral genome from different sources of samples. RT-PCR was performed with unlabeled IndF and Np4 digoxigenin labeled primers followed by a microplate hybridization probe reaction with biotin labeled Sp3 probe. RT-PCR-ELISA was found to be 10-fold more sensitive than the conventional RT-PCR followed by agarose gel based detection of PCR product. Based on the Mean (mean +/- 3S.D.) optical density (OD) values of 47 RT-PCR negative samples, OD values above 0.306 were considered positive in RT-PCR-ELISA. A total of 82 oculo-nasal swabs and tissue samples from suspected PPR cases were analyzed by RT-PCR and RT-PCR-ELISA, which revealed 54.87 and 58.54% positivity, respectively. From an experimentally infected sheep, both RT-PCR and RT-PCR-ELISA could detect the virus from 6 days post-infection up to 9 days in oculo-nasal swabs. On post-mortem, PPR viral genome was detected in spleen, lymph node, lung, heart and liver. The correlation co-efficient between RT-PCR-ELISA OD values and either TCID50 of virus or molecules of DNA was 0.622 and 0.657, respectively. The advantages of RT-PCR-ELISA over the conventional agarose gel based detection of RT-PCR products are discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Large MIMO systems with tens of antennas in each communication terminal using full-rate non-orthogonal space-time block codes (STBC) from Cyclic Division Algebras (CDA) can achieve the benefits of both transmit diversity as well as high spectral efficiencies. Maximum-likelihood (ML) or near-ML decoding of these large-sized STBCs at low complexities, however, has been a challenge. In this paper, we establish that near-ML decoding of these large STBCs is possible at practically affordable low complexities. We show that the likelihood ascent search (LAS) detector, reported earlier by us for V-BLAST, is able to achieve near-ML uncoded BER performance in decoding a 32x32 STBC from CDA, which employs 32 transmit antennas and sends 32(2) = 1024 complex data symbols in 32 time slots in one STBC matrix (i.e., 32 data symbols sent per channel use). In terms of coded BER, with a 16x16 STBC, rate-3/4 turbo code and 4-QAM (i.e., 24 bps/Hz), the LAS detector performs close to within just about 4 dB from the theoretical MIMO capacity. Our results further show that, with LAS detection, information lossless (ILL) STBCs perform almost as good as full-diversity ILL (FD-ILL) STBCs. Such low-complexity detectors can potentially enable implementation of high spectral efficiency large MIMO systems that could be considered in wireless standards.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we are concerned with low-complexity detection in large multiple-input multiple-output (MIMO) systems with tens of transmit/receive antennas. Our new contributions in this paper are two-fold. First, we propose a low-complexity algorithm for large-MIMO detection based on a layered low-complexity local neighborhood search. Second, we obtain a lower bound on the maximum-likelihood (ML) bit error performance using the local neighborhood search. The advantages of the proposed ML lower bound are i) it is easily obtained for MIMO systems with large number of antennas because of the inherent low complexity of the search algorithm, ii) it is tight at moderate-to-high SNRs, and iii) it can be tightened at low SNRs by increasing the number of symbols in the neighborhood definition. Interestingly, the proposed detection algorithm based on the layered local search achieves bit error performances which are quite close to this lower bound for large number of antennas and higher-order QAM. For e. g., in a 32 x 32 V-BLAST MIMO system, the proposed detection algorithm performs close to within 1.7 dB of the proposed ML lower bound at 10(-3) BER for 16-QAM (128 bps/Hz), and close to within 4.5 dB of the bound for 64-QAM (192 bps/Hz).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, we reported a low-complexity likelihood ascent search (LAS) detection algorithm for large MIMO systems with several tens of antennas that can achieve high spectral efficiencies of the order of tens to hundreds of bps/Hz. Through simulations, we showed that this algorithm achieves increasingly near SISO AWGN performance for increasing number of antennas in Lid. Rayleigh fading. However, no bit error performance analysis of the algorithm was reported. In this paper, we extend our work on this low-complexity large MIMO detector in two directions: i) We report an asymptotic bit error probability analysis of the LAS algorithm in the large system limit, where N-t, N-r -> infinity keeping N-t = N-r, where N-t and N-r are the number of transmit and receive antennas, respectively. Specifically, we prove that the error performance of the LAS detector for V-BLAST with 4-QAM in i.i.d. Rayleigh fading converges to that of the maximum-likelihood (ML) detector as N-t, N-r -> infinity keeping N-t = N-r ii) We present simulated BER and nearness to capacity results for V-BLAST as well as high-rate non-orthogonal STBC from Division Algebras (DA), in a more realistic spatially correlated MIMO channel model. Our simulation results show that a) at an uncoded BER of 10(-3), the performance of the LAS detector in decoding 16 x 16 STBC from DA with N-t = = 16 and 16-QAM degrades in spatially correlated fading by about 7 dB compared to that in i.i.d. fading, and 19) with a rate-3/4 outer turbo code and 48 bps/Hz spectral efficiency, the performance degrades by about 6 dB at a coded BER of 10(-4). Our results further show that providing asymmetry in number of antennas such that N-r > N-t keeping the total receiver array length same as that for N-r = N-t, the detector is able to pick up the extra receive diversity thereby significantly improving the BER performance.