4 resultados para desert

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of new matter fields charged under the Standard Model gauge group at intermediate scales below the Grand Unification scale modifies the renormalization group evolution of the gauge couplings. This can in turn significantly change the running of the Minimal Supersymmetric Standard Model parameters, in particular the gaugino and the scalar masses. In the absence of new large Yukawa couplings we can parameterise all the intermediate scale models in terms of only two parameters controlling the size of the unified gauge coupling. As a consequence of the modified running, the low energy spectrum can be strongly affected with interesting phenomenological consequences. In particular, we show that scalar over gaugino mass ratios tend to increase and the regions of the parameter space with neutralino Dark Matter compatible with cosmological observations get drastically modified. Moreover, we discuss some observables that can be used to test the intermediate scale physics at the LHC in a wide class of models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How similar species co-exist in nature is a fundamental question in community ecology. Resource partitioning has been studied in desert lizard communities across four continents, but data from South Asia is lacking. We used area-constrained visual encounter surveys to study community composition and spatial and temporal resource partitioning in a lizard community during summer in the Thar Desert, western India, addressing an important biogeographic gap in knowledge. Twelve one-hectare grids divided into 25 m x 25 m plots were placed across four habitats barren dunes, stabilized dunes, grassland, and rocky hills. We recorded 1039 sightings of 12 species during 84 sampling sessions. Lizard abundance decreased in the order stabilized dunes > grassland > barren dunes > rocky hills; richness was in roughly the opposite order. Resource partitioning was examined for the seven commonest species. Overall spatial overlap was low (<0.6) between species pairs. Overlap was higher within habitats, but species showed finer separation through use of different microhabitat categories and specific spatial resources, as well as by positioning at different distances to vegetation. Diurnal species were also separated by peak time of activity. Space appears to be an important resource dimension facilitating coexistence in this desert lizard community. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-range transport of continental dust makes these particles a significant constituent even at locations far from their sources. It is important to study the temporal variations in dust loading over desert regions and the role of meteorology, in order to assess its radiative impact. In this paper, infrared radiance (10.5-12.5 mu m), acquired by the METEOSAT-5 satellite (similar to 5-km resolution) during 1999 and 2003 was used to quantify wind dependence of dust aerosols and to estimate the radiative forcing. Our analysis shows that the frequency of occurrence of dust events was higher during 2003 compared to 1999. Since the dust production function depends mainly on the surface wind speed over regions which are dry and without vegetation, the role of surface wind on IDDI was examined in detail. It was found that an increase of IDDI with wind speed was nearly linear and the rate of increase in IDDI with surface wind was higher during 2003 compared to 1999. It was also observed that over the Indian desert, when wind speed was the highest during monsoon months (June to August), the dust production rate was lower because of higher soil moisture (due to monsoon rainfall). Over the Arabian deserts, when the wind speed is the highest during June to August, the dust production rate is also highest, as soil moisture is lowest during this season. Even though nothing can be said precisely on the reason why 2003 had a greater number of dust events, examination of monthly mean soil moisture at source regions indicates that the occurrence of high winds simultaneous with high soil moisture could be the reason for the decreased dust production efficiency in 1999. It appears that the deserts of Northwest India are more efficient dust sources compared to the deserts of Saudi Arabia and Northeast Africa (excluding Sahara). The radiative impact of dust over various source regions is estimated, and the regionally and annually averaged top of the atmosphere dust radiative forcing (short wave, clear-sky and over land) over the entire study region (0-35 degrees N; 30 degrees-100 degrees E) was in the range of -0.9 to +4.5 W m(-2). The corresponding values at the surface were in the range of -10 to -25 W m(-2). Our studies demonstrate that neglecting the diurnal variation of dust can cause errors in the estimation of long wave dust forcing by as much as 50 to 100%, and nighttime retrieval of dust can significantly reduce the uncertainties. A method to retrieve dust aerosols during nighttime is proposed. The regionally and annually averaged long wave dust radiative forcing was +3.4 +/- 1.6 W m(-2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several investigators in the past have used the radiance depression (with respect to clear-sky infrared radiance), resulting from the presence of mineral dust aerosols in the atmosphere, as an index of dust aerosol load in the atmosphere during local noon. Here, we have used a modified approach to retrieve dust index during night since assessment of diurnal average infrared dust forcing essentially requires information on dust aerosols during night. For this purpose, we used infrared radiance (10.5-12.5 mu m), acquired from the METEOSAT-5 satellite (similar to 5 km resolution). We found that the `dust index' algorithm, valid for daytime, will no longer hold during the night because dust is then hotter than the theoretical dust-free reference. Hence we followed a `minimum reference' approach instead of a conventional `maximum reference' approach. A detailed analysis suggests that the maximum dust load occurs during the daytime. Over the desert regions of India and Africa, maximum change in dust load is as much as a factor of four between day and night and factor of two variations are commonly observed. By realizing the consequent impact on long wave dust forcing, sensitivity studies were carried out, which indicate that utilizing day time data for estimating the diurnally averaged long-wave dust radiative forcing results in significant errors (as much as 50 to 70%). Annually and regionally averaged long wave dust radiative forcing (which account for the diurnal variation of dust) at the top of the atmosphere over Afro-Asian region is 2.6 +/- 1.8 W m(-2), which is 30 to 50% lower than those reported earlier. Our studies indicate that neglecting diurnal variation of dust while assessing its radiative impact leads to an overestimation of dust radiative forcing, which in turn result in underestimation of the radiative impact of anthropogenic aerosols.