49 resultados para cuprates
em Indian Institute of Science - Bangalore - Índia
Resumo:
In the (Bi,Pb)-Sr-Cu-O system we have examined many compositions which are either metallic or semiconducting. In the Bi2-xPbx(Ca, Sr)n+1 Cun O2n+4+δ system, we have established the superconducting properties of the n = 1 to 4 members. The Tc increases from n = 1 to 3 and does not increase further when n = 4. In Bi2Ca1-x,YxSr2Cu2Oy, the Tc decreases with increase in x.
Resumo:
Substitution of Ca by Y in TlCaBa2Cu2Oy does not favour superconductivity, but substitution of Tl by Pb or of Ca by Ln (Ln = Y or rare earth) in TlCaSr2Cu2Oy results in high Tc superconductivity (Tc π 60-90 K). TlCa1-xLnxSr2Cu2Oy is a new series of high Tc superconductors, but the x = 0.0 composition does not exhibit bulk superconductivity.
Resumo:
Glasses, prepared from the melts of Bi2(Ca, Sr)n+1 CunO2n+4 (n=1,2 and 3) have been characterized by various techniques. These glasses exhibit relatively high dielectric constants, high electrical conductivity, a ferroelectric-like dielectric hysteresis loop and pyroelectric effect at 300K. They also show weak microwave absorption at 77K.
Resumo:
Superconductivity in cuprates of the general formula TlCa1-xLnxSr2Cu2O7+ delta has been investigated as a function of Ln and x. Compositions with 0.25
Resumo:
X‐ray absorption near‐edge spectroscopy studies show that Pb in superconducting Tl0.5Pb0.5CaSr2Cu2O7+δ is essentially in the 4+ state while it is in the 2+ state in Pb2Sr2Ca1−xLnxCu3O8+δ.
Resumo:
Glasses obtained from quenching melts of superconducting bismuth cuprates of the formula Bi2(Ca,Sr)n+1CunO2n+4 with n=1 and 3 exhibit novel dielectric properties. They possess relatively high dielectric constants as well as high electrical conductivity. The novel dielectric properties of these cuprate glasses are likely to be of electronic origin. They exhibit a weak microwave absorption due to the presence of microcrystallites.
Resumo:
We calculate the binding energy of a hole pair within the extended Anderson Hamiltonian for the high-Tc cuprates including a Cu impurity and an oxygen-derived band. The results indicate that stable hole pairs can be formed for intra-atomic and interatomic Coulomb repulsion strengths larger than 6 and 3.5 eV, respectively. It is also shown that the total hybridization strength between the Cu 3d and oxygen p band should be less than 2.5 eV. The hole pairing takes place primarily within the oxygen-derived p band. The range of parameter values for which hole pairing occurs is also consistent with the earlier photoemission results from these cuprates.
Resumo:
Although it is believed that there is strong hybridization between the Cu(3d) and O(2p) orbitals in the layered cuprates and that the parent compounds such as La2CuO4 are charge-transfer gap insulators, very few models consider the Cu---O charge-transfer energy, Δ, or the hybridization strength, tpd, to be the important factors responsible for the superconductivity of these materials. Based on the crucial experimental observation that the relative intensity of the features in Cu(2p) photoemission of several families of cuprates varies systematically with the hole concentration, nh, we have been able to show that both these properties vary smoothly with Δ /tpd. More importantly, we show that the electronic polarizability of the CuO2 sheets, α , is sufficiently large to favour hole pairing and that the value α also depends on Δ/tpd. Both nh and α increase smoothly with decreasing Δ /tpd. Considering that the maximum Tc in the various cuprate families containing the same number of CuO2 sheets occurs around the same nh value (e.g., nh≈ 0.2 in cuprates with two CuO2 sheets). The present study demonstrates how Δ /tpd, α and such chemical bonding characteristics have an important bearing on the superconducting properties of the cuprates.
Resumo:
Gas sensing characteristics of YBa2Cu3O7−δ, La2−x SrxCuO4, and Bi2Y1−xCaxSr2Cu2O8 have been examined. La2−x SrxCuO4 (x = 0.075), and Bi2YSr2Cu2O8 are found to show good sensitivity (≈10 ppm) to ethyl alcohol and such vapours.
Resumo:
The superconducting transition temperature, Tc, of several series of cuprates shows a nonlinear dependence on the hole concentration, nh, determined by chemical titrations. The tc becomes maximum when nh is in the 0.12-0.15 range in cuprates containing a single Cu-O layer and around 0.2 in cuprates containing two Cu-O layers.
Resumo:
The superconducting transition temperatures in Bi2Ca1−xLnxSr2Cu2O8+δ, TlCa1−xLnxSr2Cu2O6+δ, and Tl0.8Ca1−xLnxBa2Cu23O6+δ (Ln=Y or rare earth) vary with composition and show a maximum at a specific value of x or δ. This observation suggests that an optimal carrier concentration is required to attain maximum Tc in such cuprates which seem to be two‐band systems
Resumo:
Rare earth cuprates, La2CuO4 Nd2CuO4, La1.8M0.2CuO4 (M=Ca.Sr) and Nd1.85Ce0.15CuO4 have been prepared by the combustion of redox mixtures containing corresponding metal nitrates and maleic hydrazide, C4H4N2O2, at 350°C. The solid combustion products are submicron size amorphous powders which on heat treatment (700°C, 30 minutes) yield crystalline single phase cuprates. Strontium doped lanthanum cuprate, La1.8Sr0.2CuO4, shows an onset of superconductivity at 36K.
Resumo:
Cuprates of the formula TlSr3−xLnxCu2O7 (Ln=Pr, NdorY) derived from the hypothetical TlSr3Cu2O7 show superconductivity with Tcs up to 95 K when 0.5less, approximatex≤0.75, the x=1.0 compositions being insulators. Rietveld analysis of X-ray diffraction profiles has been carried out for two superconducting members of this family. The unit cell a-parameter, and hence the in-plane Cu-O distance, increases with increase in x. The Tc value decreases with increase in x or the in-plane Cu-O distance in all the series of cuprates. Superconductivity in the Tl1−yPbySr3−xNdxCu2O7 systems is found with the highest Tc of 95 K when y=0.2 and x=0.5. The in-plane Cu-O distances in all the cuprates studied fall in the range found in the Sr-class of cuprate superconductors.