78 resultados para crash avoidance, path planning, spatial modeling, object tracking
em Indian Institute of Science - Bangalore - Índia
Resumo:
Visual tracking has been a challenging problem in computer vision over the decades. The applications of Visual Tracking are far-reaching, ranging from surveillance and monitoring to smart rooms. Mean-shift (MS) tracker, which gained more attention recently, is known for tracking objects in a cluttered environment and its low computational complexity. The major problem encountered in histogram-based MS is its inability to track rapidly moving objects. In order to track fast moving objects, we propose a new robust mean-shift tracker that uses both spatial similarity measure and color histogram-based similarity measure. The inability of MS tracker to handle large displacements is circumvented by the spatial similarity-based tracking module, which lacks robustness to object's appearance change. The performance of the proposed tracker is better than the individual trackers for tracking fast-moving objects with better accuracy.
Resumo:
This paper addresses the problem of singularity-free path planning for the six-degree-of-freedom parallel manipulator known as the Stewart platform manipulator. Unlike serial manipulators, the Stewart platform possesses singular configurations within the workspace where the manipulator is uncontrollable. An algorithm has been developed to construct continuous paths within the workspace of the manipulator by avoiding singularities and ill-conditioning. Given two end-poses of the manipulator, the algorithm finds out safe (well-conditioned) via points and plans a continuous path from the initial pose to the final one. When the two end-poses belong to different branches and no singularity-free path is possible, the algorithm indicates the impossibility of a valid path. A numerical example has also been presented as illustration of the path planning strategy.
Resumo:
This paper presents a Dubins model based strategy to determine the optimal path of a Miniature Air Vehicle (MAV), constrained by a bounded turning rate, that would enable it to fly along a given straight line, starting from an arbitrary initial position and orientation. The method is then extended to meet the same objective in the presence of wind which has a magnitude comparable to the speed of the MAV. We use a modification of the Dubins' path method to obtain the complete optimal solution to this problem in all its generality.
Resumo:
In this paper a nonlinear control has been designed using the dynamic inversion approach for automatic landing of unmanned aerial vehicles (UAVs), along with associated path planning. This is a difficult problem because of light weight of UAVs and strong coupling between longitudinal and lateral modes. The landing maneuver of the UAV is divided into approach, glideslope and flare. In the approach UAV aligns with the centerline of the runway by heading angle correction. In glideslope and flare the UAV follows straight line and exponential curves respectively in the pitch plane with no lateral deviations. The glideslope and flare path are scheduled as a function of approach distance from runway. The trajectory parameters are calculated such that the sink rate at touchdown remains within specified bounds. It is also ensured that the transition from the glideslope to flare path is smooth by ensuring C-1 continuity at the transition. In the outer loop, the roll rate command is generated by assuring a coordinated turn in the alignment segment and by assuring zero bank angle in the glideslope and flare segments. The pitch rate command is generated from the error in altitude to control the deviations from the landing trajectory. The yaw rate command is generated from the required heading correction. In the inner loop, the aileron, elevator and rudder deflections are computed together to track the required body rate commands. Moreover, it is also ensured that the forward velocity of the UAV at the touch down remains close to a desired value by manipulating the thrust of the vehicle. A nonlinear six-DOF model, which has been developed from extensive wind-tunnel testing, is used both for control design as well as to validate it.
Resumo:
We present a motion detection algorithm which detects direction of motion at sufficient number of points and thus segregates the edge image into clusters of coherently moving points. Unlike most algorithms for motion analysis, we do not estimate magnitude of velocity vectors or obtain dense motion maps. The motivation is that motion direction information at a number of points seems to be sufficient to evoke perception of motion and hence should be useful in many image processing tasks requiring motion analysis. The algorithm essentially updates the motion at previous time using the current image frame as input in a dynamic fashion. One of the novel features of the algorithm is the use of some feedback mechanism for evidence segregation. This kind of motion analysis can identify regions in the image that are moving together coherently, and such information could be sufficient for many applications that utilize motion such as segmentation, compression, and tracking. We present an algorithm for tracking objects using our motion information to demonstrate the potential of this motion detection algorithm.
Resumo:
We present an algorithm for tracking objects in a video sequence, based on a novel approach for motion detection. We do not estimate the velocity �eld. In-stead we detect only the direction of motion at edge points and thus isolate sets of points which are moving coherently. We use a Hausdor� distance based matching algorithm to match point sets in local neighborhood and thus track objects in a video sequence. We show through some examples the e�ectiveness of the algo- rithm.
Resumo:
Real-time object tracking is a critical task in many computer vision applications. Achieving rapid and robust tracking while handling changes in object pose and size, varying illumination and partial occlusion, is a challenging task given the limited amount of computational resources. In this paper we propose a real-time object tracker in l(1) framework addressing these issues. In the proposed approach, dictionaries containing templates of overlapping object fragments are created. The candidate fragments are sparsely represented in the dictionary fragment space by solving the l(1) regularized least squares problem. The non zero coefficients indicate the relative motion between the target and candidate fragments along with a fidelity measure. The final object motion is obtained by fusing the reliable motion information. The dictionary is updated based on the object likelihood map. The proposed tracking algorithm is tested on various challenging videos and found to outperform earlier approach.
Resumo:
Designing a robust algorithm for visual object tracking has been a challenging task since many years. There are trackers in the literature that are reasonably accurate for many tracking scenarios but most of them are computationally expensive. This narrows down their applicability as many tracking applications demand real time response. In this paper, we present a tracker based on random ferns. Tracking is posed as a classification problem and classification is done using ferns. We used ferns as they rely on binary features and are extremely fast at both training and classification as compared to other classification algorithms. Our experiments show that the proposed tracker performs well on some of the most challenging tracking datasets and executes much faster than one of the state-of-the-art trackers, without much difference in tracking accuracy.
Resumo:
The problem of continuous curvature path planning for passages is considered. This problem arises when an autonomous vehicle traverses between prescribed boundaries such as corridors, tunnels, channels, etc. Passage boundaries with curvature and heading discontinuities pose challenges for generating smooth paths passing through them. Continuous curvature half-S shaped paths derived from the Four Parameter Logistic Curve family are proposed as a prospective path planning solution. Analytic conditions are derived for generating continuous curvature paths confined within the passage boundaries. Zero end curvature highlights the scalability of the proposed solution and its compatibility with other path planners in terms of larger path planning domains. Various scenarios with curvature and heading discontinuities are considered presenting viability of the proposed solution.
Resumo:
This article addresses the problem of determining the shortest path that connects a given initial configuration (position, heading angle, and flight path angle) to a given rectilinear or a circular path in three-dimensional space for a constant speed and turn-rate constrained aerial vehicle. The final path is assumed to be located relatively far from the starting point. Due to its simplicity and low computational requirements the algorithm can be implemented on a fixed-wing type unmanned air vehicle in real time in missions where the final path may change dynamically. As wind has a very significant effect on the flight of small aerial vehicles, the method of optimal path planning is extended to meet the same objective in the presence of wind comparable to the speed of the aerial vehicles. But, if the path to be followed is closer to the initial point, an off-line method based on multiple shooting, in combination with a direct transcription technique, is used to obtain the optimal solution. Optimal paths are generated for a variety of cases to show the efficiency of the algorithm. Simulations are presented to demonstrate tracking results using a 6-degrees-of-freedom model of an unmanned air vehicle.
Resumo:
Much of the benefits of deploying unmanned aerial vehicles can be derived from autonomous missions. For such missions, however, sense-and-avoid capability (i.e., the ability to detect potential collisions and avoid them) is a critical requirement. Collision avoidance can be broadly classified into global and local path-planning algorithms, both of which need to be addressed in a successful mission. Whereas global path planning (which is mainly done offline) broadly lays out a path that reaches the goal point, local collision-avoidance algorithms, which are usually fast, reactive, and carried out online, ensure safety of the vehicle from unexpected and unforeseen obstacles/collisions. Even though many techniques for both global and local collision avoidance have been proposed in the recent literature, there is a great interest around the globe to solve this important problem comprehensively and efficiently and such techniques are still evolving. This paper presents a brief overview of a few promising and evolving ideas on collision avoidance for unmanned aerial vehicles, with a preferential bias toward local collision avoidance.
Resumo:
This paper considers the problem of determining the time-optimal path of a fixed-wing Miniature Air Vehicle (MAV), in the presence of wind. The MAV, which is subject to a bounded turn rate, is required to eventually converge to a straight line starting from a known initial position and orientation. Earlier work in the literature uses Pontryagin's Minimum Principle (PMP) to solve this problem only for the no-wind case. In contrast, the present work uses a geometric approach to solve the problem completely in the presence of wind. In addition, it also shows how PMP can be used to partially solve the problem. Using a 6-DOF model of a MAV the generated optimal path is tracked by an autopilot consisting of proportional-integral-derivative (PID) controllers. The simulation results show the path generation and tracking for cases with steady and time-varying wind. Some issues on real-time path planning are also addressed.
Resumo:
This paper describes an algorithm for ``direct numerical integration'' of the initial value Differential-Algebraic Inequalities (DAI) in a time stepping fashion using a sequential quadratic programming (SQP) method solver for detecting and satisfying active path constraints at each time step. The activation of a path constraint generally increases the condition number of the active discretized differential algebraic equation's (DAE) Jacobian and this difficulty is addressed by a regularization property of the alpha method. The algorithm is locally stable when index 1 and index 2 active path constraints and bounds are active. Subject to available regularization it is seen to be stable for active index 3 active path constraints in the numerical examples. For the high index active path constraints, the algorithm uses a user-selectable parameter to perturb the smaller singular values of the Jacobian with a view to reducing the condition number so that the simulation can proceed. The algorithm can be used as a relatively cheaper estimation tool for trajectory and control planning and in the context of model predictive control solutions. It can also be used to generate initial guess values of optimization variables used as input to inequality path constrained dynamic optimization problems. The method is illustrated with examples from space vehicle trajectory and robot path planning.