124 resultados para covered soil
em Indian Institute of Science - Bangalore - Índia
Resumo:
A plane strain elastic interaction analysis of a strip footing resting on a reinforced soil bed has been made by using a combined analytical and finite element method (FEM). In this approach the stiffness matrix for the footing has been obtained using the FEM, For the reinforced soil bed (halfplane) the stiffness matrix has been obtained using an analytical solution. For the latter, the reinforced zone has been idealised as (i) an equivalent orthotropic infinite strip (composite approach) and (ii) a multilayered system (discrete approach). In the analysis, the interface between the strip footing and reinforced halfplane has been assumed as (i) frictionless and (ii) fully bonded. The contact pressure distribution and the settlement reduction have been given for different depths of footing and scheme of reinforcement in soil. The load-deformation behaviour of the reinforced soil obtained using the above modelling has been compared with some available analytical and model test results. The equivalent orthotropic approach proposed in this paper is easy to program and is shown to predict the reinforcing effects reasonably well.
Resumo:
Studies on the swelling behaviour of mixtures of bentonite clay and nonswelling coarser fractions of different sizes and shapes reveal that observed swelling occurs only after the voids of the nonswelling particles are filled up with swollen clay particles. The magnitude of the swell within the voids, called intervoid swelling is large when the size and percentage of the nonswelling coarser fraction is large. The observable swell, after intervoid swelling, is called primary swelling and follows a rectangular hyperbolic relationship with time. The total swell per gram of the clay decreases with an increase in the size of the nonswelling fraction and with a decrease in the percentage of swelling clay. Time-swell relationships show that swelling continues to occur for a long time after the primary swelling, and this is called secondary swelling.
Resumo:
Energy-efficient, economical and durable building materials are essential for sustainable construction practices. The paper deals with production and properties of energy-efficient steam-cured stabilised soil blocks used fbr masonry construction. Problems of mixing expansive soil and lime, and production of blocks using soil-lime mixtures have been discussed briefly. Details of steam curing of stabilised soil blocks and properties of such blocks are given. A comparison of energy content of steam-cured soil blocks and burnt bricks is presented. It has been shown that energy-efficient steam cured soil blocks (consuming 35% less thermal energy compared to burnt clay bricks) having high compressive strength can be easily produced in a decentralised manner.
Resumo:
An interaction analysis has been conducted to study the effects of a local loss of support beneath the beam footing of a two-bay plane frame. The results of the study indicate that the magnitude of increase in the bending moment and axial force in the structure due to the presence of a void are dependent, not only on the extent of support loss, but also on the relative stiffnesses between foundation beam and soil, and between superstructure and soil. The increase in bending moment even for a void span of 1/12 of the foundation beam length can become so significant as to exceed the safety provisions. The study shows that the effect of a void on the superstructure moments can be greatly minimized by a combination of rigid foundation and flexible superstructure.
Resumo:
X-ray and He(II) ultraviolet photoelectron spectroscopy studies of the interaction of CO with oxygen on potassium-, caesium- and barium-covered Ag surfaces have shown the formation of carbonate at 300 K. While on a caesium-covered surface only carbonate formation takes place, on the potassium- and barium-covered surfaces molecularly chemisorbed CO is also formed. The variation of the surface concentrations of carbon and oxygen with temperature has been examined and a reaction sequence for the interaction of CO with adsorbed oxygen on potassium-, caesium- and barium-covered Ag surfaces is suggested.
Resumo:
2,4-Dinitrophenol and paranitrophenol are two major soil pollutants which are known to be metabolized by different soil microbes. Relative phytotoxicities of these parent compounds and their metabolic transformation products to the growth of cucumber seedlings were assessed. It was evident that such microbial transformations widely occurring in the soil are effective detoxification reactions and are beneficial for the plants.
Resumo:
Erosion resistance of pressed soil blocks used for wall construction is discussed. The spray erosion test using a standardized shower spray is discussed. Spray erosion behaviour of pressed soil blocks made out of five different soils is presented. Results of laboratory and field tests are compared. Effect of clay content of the soil and density of the pressed soil block on erosion are discussed. Also the effect of water-proof coatings on erosion of soil blocks is presented. Erosion resistance of soil blocks stabilized with organic (jaggery syrup and starch) or inorganic binders is also discussed.
Resumo:
The paper presents a method for the evaluation of external stability of reinforced soil walls subjected to earthquakes in the framework of the pseudo-dynamic method. The seismic reliability of the wall is evaluated by considering the different possible failure modes such as sliding along the base, overturning about the toe point of the wall, bearing capacity and the eccentricity of the resultant force. The analysis is performed considering properties of the reinforced backfill, foundation soil below the base of the wall, length of the geosynthetic reinforcement and characteristics of earthquake ground motions such as shear wave and primary wave velocity as random variables. The optimum length of reinforcement needed to maintain stability against four modes of failure by targeting various component reliability indices is obtained. Differences between pseudo-static and pseudo-dynamic methods are clearly highlighted in the paper. A complete analysis of pseudo-static and pseudo-dynamic methodologies shows that the pseudodynamic method results in realistic design values for the length of geosynthetic reinforcement under earthquake conditions.
Resumo:
Water adsorbs molecularly on a clean Zn(0001) surface; on a surface covered with atomic oxygen, however, hydroxyl species is produced due to proton abstraction by the surface oxygen atoms. Methanol, molecularly adsorbed on a clean surface at 80 K, transforms to methoxy species above 110 K. On an atomic oxygen-covered surface, adsorbed methanol gives rise to methoxy species and water, the latter arising from proton abstraction. HCHO adsorbs molecularly at 80 K on both clean as well as oxygen-covered surfaces and polymerizes at higher temperatures. Formic acid does not adsorb on a clean Zn surface, but on an oxygen-covered surface gives rise to formate and hydroxyl species.
Resumo:
EELS studies provide definitive evidence for the hydroxylation of oxygen-covered Cu(110) and Zn(0001) surfaces on interaction with proton donor molecules such as H2O, CH3OH, HCOOH, NH3 and (CH3)2NH. The occurrence of surface hydroxylation is unambigouusly shown by a study of the interaction of H2S and HCl with an oxygen covered Cu(110) surface.
Resumo:
Marked changes in the LVV/LMV and LVV/LMM Auger intensity ratios of Co, Ni and Cu are observed on depositing Al on their surfaces. These changes, ascribed to charge-transfer or hybridization effects, are accompanied by changes in the intensity of the satellites next to the core levels of the transition metals.
Resumo:
The behavior of pile foundations in non liquefiable soil under seismic loading is considerably influenced by the variability in the soil and seismic design parameters. Hence, probabilistic models for the assessment of seismic pile design are necessary. Deformation of pile foundation in non liquefiable soil is dominated by inertial force from superstructure. The present study considers a pseudo-static approach based on code specified design response spectra. The response of the pile is determined by equivalent cantilever approach. The soil medium is modeled as a one-dimensional random field along the depth. The variability associated with undrained shear strength, design response spectrum ordinate, and superstructure mass is taken into consideration. Monte Carlo simulation technique is adopted to determine the probability of failure and reliability indices based on pile failure modes, namely exceedance of lateral displacement limit and moment capacity. A reliability-based design approach for the free head pile under seismic force is suggested that enables a rational choice of pile design parameters.
Resumo:
An experimental investigation dealing with the influence of stress path on the shear behaviour of a layered soil prepared in the laboratory is described. Specimens trimmed in vertical and horizontal directions have been sheared under three different stress paths in compression and extension tests. Either in compression or extension, the stress–strain behaviour of the specimens with both orientations was apparently the same, although the volume change behaviour was different. The effective stress parameters C′ and ′ were found to be unique and independent of the stress path and two principal orientations. However, the values of ′ in extension tests were 6–7° higher than those in compression tests.
Resumo:
Soil-cement blocks are employed for load bearing masonry buildings. This paper deals with the study on the influence of bed joint thickness and elastic properties of the soil-cement blocks, and the mortar on the strength and behavior of soil-cement block masonry prisms. Influence of joint thickness on compressive strength has been examined through an experimental program. The nature of stresses developed and their distribution, in the block and the mortar of the soil-cement block masonry prism under compression, has been analyzed by an elastic analysis using FEM. Influence of various parameters like joint thickness, ratio of block to mortar modulus, and Poisson's ratio of the block and the mortar are considered in FEM analysis. Some of the major conclusions of the study are: (1) masonry compressive strength is sensitive to the ratio of modulus of block to that of the mortar (Eb/Em) and masonry compressive strength decreases as the mortar joint thickness is increased for the case where the ratio of block to mortar modulus is more than 1; (2) the lateral tensile stresses developed in the masonry unit are sensitive to the Eb/Em ratio and the Poisson's ratio of mortar and the masonry unit; and (3) lateral stresses developed in the masonry unit are more sensitive to the Poisson's ratio of the mortar than the Poisson's ratio of the masonry unit.