89 resultados para coupled-cluster theory
em Indian Institute of Science - Bangalore - Índia
Resumo:
The nonlinear propagation characteristics of surface acoustic waves on an isotropic elastic solid have been studied in this paper. The solution of the harmonic boundary value problem for Rayleigh waves is obtained as a generalized Fourier series whose coefficients are proportional to the slowly varying amplitudes of the various harmonics. The infinite set of coupled equations for the amplitudes when solved exhibit an oscillatory slow variation signifying a continuous transfer of energy back and forth among the various harmonics. A conservation relation is derived among all the harmonic amplitudes.
Resumo:
Using Generalized Gradient Approximation (GGA) and meta-GGA density functional methods, structures, binding energies and harmonic vibrational frequencies for the clusters O-4(+), O-6(+), O-8(+) and O-10(+) have been calculated. The stable structures of O-4(+), O-6(+), O-8(+) and O-10(+) have point groups D-2h, D-3h, D-4h, and D-5h optimized on the quartet, sextet, octet and dectet potential energy surfaces, respectively. Rectangular (D-2h) O-4(+) has been found to be more stable compared to trans-planar (C-2h) on the quartet potential energy surface. Cyclic structure (D-3h) of CA cluster ion has been calculated to be more stable than other structures. Binding energy (B.E.) of the cyclic O-6(+) is in good agreement with experimental measurement. The zero-point corrected B.E. of O-8(+) with D4h symmetry on the octet potential energy surface and zero-point corrected B.E. of O-10(+) with D-5h symmetry on the dectet potential energy surface are also in good agreement with experimental values. The B.E. value for O-4(+) is close to the experimental value when single point energy is calculated by Brueckner coupled-cluster method, BD(T). (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
As computational Grids are increasingly used for executing long running multi-phase parallel applications, it is important to develop efficient rescheduling frameworks that adapt application execution in response to resource and application dynamics. In this paper, three strategies or algorithms have been developed for deciding when and where to reschedule parallel applications that execute on multi-cluster Grids. The algorithms derive rescheduling plans that consist of potential points in application execution for rescheduling and schedules of resources for application execution between two consecutive rescheduling points. Using large number of simulations, it is shown that the rescheduling plans developed by the algorithms can lead to large decrease in application execution times when compared to executions without rescheduling on dynamic Grid resources. The rescheduling plans generated by the algorithms are also shown to be competitive when compared to the near-optimal plans generated by brute-force methods. Of the algorithms, genetic algorithm yielded the most efficient rescheduling plans with 9-12% smaller average execution times than the other algorithms.
Resumo:
A novel analysis to compute the admittance characteristics of the slots cut in the narrow wall of a rectangular waveguide, which includes the corner diffraction effects and the finite waveguide wall thickness, is presented. A coupled magnetic field integral equation is formulated at the slot aperture which is solved by the Galerkin approach of the method of moments using entire domain sinusoidal basis functions. The externally scattered fields are computed using the finite difference method (FDM) coupled with the measured equation of invariance (MEI). The guide wall thickness forms a closed cavity and the fields inside it are evaluated using the standard FDM. The fields scattered inside the waveguide are formulated in the spectral domain for faster convergence compared to the traditional spatial domain expansions. The computed results have been compared with the experimental results and also with the measured data published in previous literature. Good agreement between the theoretical and experimental results is obtained to demonstrate the validity of the present analysis.
Resumo:
A simple semiempirical quantum chemical approach (Extended Huckel Theory) is shown to give a reasonable description of the electronic structural aspects of chemisorption on the mercury model surface. Chemisorptive interaction of alkali metal atoms and cations, halogen atoms and anions, and water molecules with a charge-neutralized hexagonal close-packed cluster of seven Hg atoms is studied. Adsorption of H, C, N and O atoms on the same model cluster is studied for comparison with earlier work. Chemisorption energies, charge transfer, interaction distance and hydration effects are discussed and compared with experimental results where available.
Resumo:
Although various strategies have been developed for scheduling parallel applications with independent tasks, very little work exists for scheduling tightly coupled parallel applications on cluster environments. In this paper, we compare four different strategies based on performance models of tightly coupled parallel applications for scheduling the applications on clusters. In addition to algorithms based on existing popular optimization techniques, we also propose a new algorithm called Box Elimination that searches the space of performance model parameters to determine the best schedule of machines. By means of real and simulation experiments, we evaluated the algorithms on single cluster and multi-cluster setups. We show that our Box Elimination algorithm generates up to 80% more efficient schedule than other algorithms. We also show that the execution times of the schedules produced by our algorithm are more robust against the performance modeling errors.
Resumo:
Support Vector Machines(SVMs) are hyperplane classifiers defined in a kernel induced feature space. The data size dependent training time complexity of SVMs usually prohibits its use in applications involving more than a few thousands of data points. In this paper we propose a novel kernel based incremental data clustering approach and its use for scaling Non-linear Support Vector Machines to handle large data sets. The clustering method introduced can find cluster abstractions of the training data in a kernel induced feature space. These cluster abstractions are then used for selective sampling based training of Support Vector Machines to reduce the training time without compromising the generalization performance. Experiments done with real world datasets show that this approach gives good generalization performance at reasonable computational expense.
Resumo:
Polarized scattering in spectral lines is governed by a 4; 4 matrix that describes how the Stokes vector is scattered and redistributed in frequency and direction. Here we develop the theory for this redistribution matrix in the presence of magnetic fields of arbitrary strength and direction. This general magnetic field case is called the Hanle- Zeeman regime, since it covers both of the partially overlapping weak- and strong- field regimes in which the Hanle and Zeeman effects dominate the scattering polarization. In this general regime, the angle-frequency correlations that describe the so-called partial frequency redistribution (PRD) are intimately coupled to the polarization properties. We develop the theory for the PRD redistribution matrix in this general case and explore its detailed mathematical properties and symmetries for the case of a J = 0 -> 1 -> 0 scattering transition, which can be treated in terms of time-dependent classical oscillator theory. It is shown how the redistribution matrix can be expressed as a linear superposition of coherent and noncoherent parts, each of which contain the magnetic redistribution functions that resemble the well- known Hummer- type functions. We also show how the classical theory can be extended to treat atomic and molecular scattering transitions for any combinations of quantum numbers.
Resumo:
A system of many coupled oscillators on a network can show multicluster synchronization. We obtain existence conditions and stability bounds for such a multicluster synchronization. When the oscillators are identical, we obtain the interesting result that network structure alone can cause multicluster synchronization to emerge even when all the other parameters are the same. We also study occurrence of multicluster synchronization when two different types of oscillators are coupled.
Resumo:
Theoretical studies using density functional theory are carried out to understand the electronic structure and bonding and electronic properties of elemental beta-rhombohedral boron. The calculated band structure of ideal beta-rhombohedral boron (B-105) shows valence electron deficiency and depicts metallic behavior. This is in contrast to the experimental result that it is a semiconductor. To understand this ambiguity we discuss the electronic structure and bonding of this allotrope with cluster fragment approach using our recently proposed mno rule. This helps us to comprehend in greater detail the structure of B-105 and materials which are closely related to beta-rhombohedral boron. The molecular structures B12H12-2, B28H21+1, BeB27H21, LiB27H21-1, CB27H21+2, B57H36+3, Be3B54H36, and Li2CB54H36, and corresponding solids Li8Be3B102 and Li10CB102 are arrived at using these ideas and studied using first principles density functional theory calculations.
Resumo:
The natural modes of a non-linear system with two degrees of freedom are investigated. The system, which may contain either hard or soft springs, is shown to possess three modes of vibration one of which does not have any counterpart in the linear theory. The stability analysis indicates the existence of seven different modal stability patterns depending on the values of two parameters of non-linearity.
Resumo:
In the framework of the ECSK [Einstein-Cartan-Sciama-Kibble] theory of cosmology, a scalar field nonminimally coupled to the gravitational field is considered. For a Robertson-Walker open universe (k=0) in the radiation era, the field equations admit a singularity-free solution for the scale factor. In theory, the torsion is generated through nonminimal coupling of a scalar field to the gravitation field. The nonsingular nature of the cosmological model automatically solves the flatness problem. Further absence of event horizon and particle horizon explains the high degree of isotropy, especially of 2.7-K background radiation.
Resumo:
Analytical expressions are found for the coupled wavenumbers in an infinite fluid-filled cylindrical shell using the asymptotic methods. These expressions are valid for any general circumferential order (n).The shallow shell theory (which is more accurate at higher frequencies)is used to model the cylinder. Initially, the in vacua shell is dealt with and asymptotic expressions are derived for the shell wavenumbers in the high-and the low-frequency regimes. Next, the fluid-filled shell is considered. Defining a relevant fluid-loading parameter p, we find solutions for the limiting cases of small and large p. Wherever relevant, a frequency scaling parameter along with some ingenuity is used to arrive at an elegant asymptotic expression. In all cases.Poisson's ratio v is used as an expansion variable. The asymptotic results are compared with numerical solutions of the dispersion equation and the dispersion relation obtained by using the more general Donnell-Mushtari shell theory (in vacuo and fluid-filled). A good match is obtained. Hence, the contribution of this work lies in the extension of the existing literature to include arbitrary circumferential orders(n). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Numerous reports from several parts of the world have confirmed that on calm clear nights a minimum in air temperature can occur just above ground, at heights of the order of $\frac{1}{2}$ m or less. This phenomenon, first observed by Ramdas & Atmanathan (1932), carries the associated paradox of an apparently unstable layer that sustains itself for several hours, and has not so far been satisfactorily explained. We formulate here a theory that considers energy balance between radiation, conduction and free or forced convection in humid air, with surface temperature, humidity and wind incorporated into an appropriate mathematical model as parameters. A complete numerical solution of the coupled air-soil problem is used to validate an approach that specifies the surface temperature boundary condition through a cooling rate parameter. Utilizing a flux-emissivity scheme for computing radiative transfer, the model is numerically solved for various values of turbulent friction velocity. It is shown that a lifted minimum is predicted by the model for values of ground emissivity not too close to unity, and for sufficiently low surface cooling rates and eddy transport. Agreement with observation for reasonable values of the parameters is demonstrated. A heuristic argument is offered to show that radiation substantially increases the critical Rayleigh number for convection, thus circumventing or weakening Rayleigh-Benard instability. The model highlights the key role played by two parameters generally ignored in explanations of the phenomenon, namely surface emissivity and soil thermal conductivity, and shows that it is unnecessary to invoke the presence of such particulate constituents as haze to produce a lifted minimum.
Resumo:
We propose and develop here a phenomenological Ginzburg-Landau-like theory of cuprate high-temperature superconductivity. The free energy of a cuprate superconductor is expressed as a functional F of the complex spin-singlet pair amplitude psi(ij) equivalent to psi(m) = Delta(m) exp(i phi(m)), where i and j are nearest-neighbor sites of the square planar Cu lattice in which the superconductivity is believed to primarily reside, and m labels the site located at the center of the bond between i and j. The system is modeled as a weakly coupled stack of such planes. We hypothesize a simple form FDelta, phi] = Sigma(m)A Delta(2)(m) + (B/2)Delta(4)(m)] + C Sigma(< mn >) Delta(m) Delta(n) cos(phi(m) - phi(n)) for the functional, where m and n are nearest-neighbor sites on the bond-center lattice. This form is analogous to the original continuum Ginzburg-Landau free-energy functional; the coefficients A, B, and C are determined from comparison with experiments. A combination of analytic approximations, numerical minimization, and Monte Carlo simulations is used to work out a number of consequences of the proposed functional for specific choices of A, B, and C as functions of hole density x and temperature T. There can be a rapid crossover of