110 resultados para counter terrorism
em Indian Institute of Science - Bangalore - Índia
Resumo:
Quinuclidine grafted cationic bile salts are forming salted hydrogels. An extensive investigation of the effect of the electrolyte and counterions on the gelation has been envisaged. The special interest of the quinuclidine grafted bile salt is due to its broader experimental range of gelation to study the effect of electrolyte. Rheological features of the hydrogels are typical of enthalpic networks exhibiting a scaling law of the elastic shear modulus with the concentration (scaling exponent 2.2) modeling cellular solids in which the bending modulus is the dominant parameter. The addition of monovalent salt (NaCl) favors the formation of gels in a first range (0.00117 g cm-3 (0.02 M) < TNaCl < 0.04675 g cm-3 (0.8 M)). At larger salt concentrations, the gels become more heterogeneous with nodal zones in the micron scale. Small-angle neutron scattering experiments have been used to characterize the rigid fibers (
Resumo:
Sequential up/down counting is required many a time. In this paper, the logical design of such a counter of the parallel carry type is furnished.
Resumo:
Photodimerization of acenaphthylene and 5,6-dichloroacenaphthylene solubilized in sodium dodecylsulphate (SDS), cetyltrimethylammonium chloride (CTAC), dodecyltrimethylammonium chloride (DTAC), cetyltrimethylammonium bromide (CTAB) and Triton X-100 micelles gives a mixture of cis and trans dimers. The magnitude of the cis:trans ratio is sensitive to the type of micelle used. In CTAB micelles the heavy atom effect of the bromide counter-ions leads to an increased triplet-derived trans dimer yield, whereas in micelles with light atom counter-ions (CTAC, DTAC and SDS) the singlet-derived cis dimer predominates.
Resumo:
Digital positioning systems often require a down counter for their operation. Due to the necessity of particular logic sequences and control of individual terminals, the design of down counters for particular use is very essential. In this paper the design procedure and logic diagram for a synchronous decade down counter with parallel carry are presented.
Resumo:
Conjugated polymers are promising materials for electrochromic device technology. Aqueous dispersions of poly(3,4-ethylenedioxythiophene)-(PEDOT) were spin coated onto transparent conducting oxide (TCO) coated glass substrates. A seven-layer electrochromic device was fabricated with the following configuration: glass/transparent conducting oxide (TCO)/PEDOT (main electrochromic layer)/gel electrolyte/prussian blue (counter electrode)/TCO/glass. The device fabricated with counter electrode (Prussian blue) showed a contrast of 18% and without counter electrode showed visible contrast of 5% at 632 nm at a voltage of 1.9 V. The comparison of the device is done in terms of the colouration efficiency of the devices with and without counter electrode.
Resumo:
Four new vesicle-forming bolaphile/amphiphile ion pairs are synthesized; the bolaphile shapes in such hybrid systems strongly control their vesicular properties.
Resumo:
DNA gyrase is the target of two plasmid-encoded toxins CcdB and microcin B17, which ensure plasmid maintenance. These proteins stabilize gyrase-DNA covalent complexes leading to double-strand breaks in the genome. In contrast, the physiological role of chromosomally encoded inhibitor of DNA gyrase (Gyrl) in Escherichia coli is unclear and its mechanism of inhibition has not been established. We demonstrate that the mode of inhibition of GyrI is distinct from all other gyrase inhibitors. It inhibits DNA gyrase prior to, or at the step of, binding of DNA by the enzyme. Gyrl reduces intrinsic as well as toxin-stabilized gyrase-DNA covalent complexes. Furthermore, Gyri reduces microcin B17-mediated double-strand breaks in vivo, imparting protection to the cells against the toxin, substantiating the in vitro results. Thus, Gyrl is an antidote to DNA gyrase-specific proteinaceous poisons encoded by plasmid addiction systems.
Resumo:
We identify a class of timed automata, which we call counter-free input-determined automata, which characterize the class of timed languages definable by several timed temporal logics in the literature, including MTL. We make use of this characterization to show that MTL+Past satisfies an “ultimate stability” property with respect to periodic sequences of timed words. Our results hold for both the pointwise and continuous semantics. Along the way we generalize the result of McNaughton-Papert to show a counter-free automata characterization of FO-definable finitely varying functions.
Resumo:
Laboratory advection-diffusion tests are performed on two regional soils-Brown Earth and Red Earth-in order to assess their capacity to control contaminant migration with synthetic contaminant solution of sodium sulphate with sodium concentration of 1000 mg/L. The test was designed to study the transport/attenuation behaviour of sodium in the presence of sulphate. Effective diffusion coefficient (De) that takes into consideration of attenuation processes is used. Cation exchange capacity is an important factor for the attenuation of cationic species. Monovalent sodium ion cannot usually replace other cations and the retention of sodium ion is very less. This is particularly true when chloride is anion is solution. However, sulphate is likely to play a role in the attenuation of sodium. Cation exchange capacity and type of exchangeable ions of soils are likely to play an important role. The effect of sulphate ions on the effective diffusion coefficient of sodium, in two different types of soils, of different cation exchange capacity has been studied. The effective diffusion coefficients of sodium ion for both the soils were calculated using Ogata Bank’s equation. It was shown that effective diffusion coefficient of sodium in the presence of sulphate is lower for Brown Earth than for Red Earth due to exchange of sodium with calcium ions from the exchangeable complex of clay. The soil with the higher cation exchange retained more sodium. Consequently, the breakthrough times and the number of pore volumes of sodium ion increase with the cation exchange capacity of soil.
Resumo:
In this study we have employed multiwall carbon nanotubes (MWCNT), decorated with platinum as catalytic layer for the reduction of tri-iodide ions in dye sensitized solar cell (DSSC). MWCNTs have been prepared by a simple one step pyrolysis method using ferrocene as the catalyst and xylene as the carbon source. Platinum decorated MWCNTs have been prepared by chemical reduction method. The as prepared MWCNTs and Pt/MWCNTs have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In combination with a dye adsorbed TiO(2) photoanode and an organic liquid electrolyte, Pt/MWCNT composite showed an enhanced short circuit current density of 16.12 mA/cm(2) leading to a cell efficiency of 6.50% which is comparable to that of Platinum. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We study the linear m= 1 counter-rotating instability in a two-component, nearly Keplerian disc. Our goal is to understand these slow modes in discs orbiting massive black holes in galactic nuclei. They are of interest not only because they are of large spatial scale and can hence dominate observations but also because they can be growing modes that are readily excited by accretion events. Self-gravity being non-local, the eigenvalue problem results in a pair of coupled integral equations, which we derive for a two-component softened gravity disc. We solve this integral eigenvalue problem numerically for various values of mass fraction in the counter-rotating component. The eigenvalues are in general complex, being real only in the absence of the counter-rotating component, or imaginary when both components have identical surface density profiles. Our main results are as follows: (i) the pattern speed appears to be non-negative, with the growth (or damping) rate being larger for larger values of the pattern speed; (ii) for a given value of the pattern speed, the growth (or damping) rate increases as the mass in the counter-rotating component increases; (iii) the number of nodes of the eigenfunctions decreases with increasing pattern speed and growth rate. Observations of lopsided brightness distributions would then be dominated by modes with the least number of nodes, which also possess the largest pattern speeds and growth rates.
Resumo:
Counter systems are a well-known and powerful modeling notation for specifying infinite-state systems. In this paper we target the problem of checking liveness properties in counter systems. We propose two semi decision techniques towards this, both of which return a formula that encodes the set of reachable states of the system that satisfy a given liveness property. A novel aspect of our techniques is that they use reachability analysis techniques, which are well studied in the literature, as black boxes, and are hence able to compute precise answers on a much wider class of systems than previous approaches for the same problem. Secondly, they compute their results by iterative expansion or contraction, and hence permit an approximate solution to be obtained at any point. We state the formal properties of our techniques, and also provide experimental results using standard benchmarks to show the usefulness of our approaches. Finally, we sketch an extension of our liveness checking approach to check general CTL properties.
Resumo:
Surface texture influences friction during sliding contact conditions. In the present investigation, the effect of surface texture and roughness of softer and harder counter materials on friction during sliding was analyzed using an inclined scratch testing system. In the experiments, two test configurations, namely (a) steel balls against aluminum alloy flats of different surface textures and (b) aluminum alloy pins against steel flats of different surface textures, are utilized. The surface textures were classified into unidirectionally ground, 8-ground, and randomly polished. For a given texture, the roughness of the flat surfaces was varied using grinding or polishing methods. Optical profilometer and scanning electron microscope were used to characterize the contact surfaces before and after the experiments. Experimental results showed that the surface textures of both harder and softer materials are important in controlling the frictional behavior. The softer material surface textures showed larger variations in friction between ground and polished surfaces. However, the harder material surface textures demonstrated a better control over friction among the ground surfaces. Although the effect of roughness on friction was less significant when compared to textures, the harder material roughness showed better correlations when compared to the softer material roughness.
Resumo:
One new homoleptic Bi(dtc)(3)] (1) (dtc = 4-hydroxypiperdine dithiocarbamate) has been synthesized and characterized by microanalysis, IR, UV-Vis, H-1 and C-13 spectroscopy and X-ray crystallography. The photoluminescence spectrum for the compound in DMSO solution was recorded. The crystal structure of 1 displayed distorted octahedral geometry around the Bi(III) center bonded through sulfur atoms of the dithiocarbamate ligands. TGA indicates that the compound decomposes to a Bi and Bi-S phase system. The Bi and Bi-S obtained from decomposition of the compound have been characterized by pXRD, EDAX and SEM. Solvothermal decomposition of 1 in the absence and presence of two different capping agents yielded three morphologically different Bi2S3 systems which were deployed as counter-electrode in dye-sensitized solar cells (DSSCs). (C) 2015 Elsevier B.V. All rights reserved.