137 resultados para contact mechanics

em Indian Institute of Science - Bangalore - Índia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The existence of an indentation size effect (ISE) in the onset of yield in a Zr-based bulk metallic glass (BMG) is investigated by employing spherical-tip nanoindentation experiments. Statistically significant data on the load at which the first pop-in in the displacement occurs were obtained for three different tip radii and in two different structural states (as-cast and structurally relaxed) of the BMG. Hertzian contact mechanics were employed to convert the pop-in loads to the maximum shear stress underneath the indenter. Results establish the existence of an ISE in the BMG of both structural states, with shear yield stress increasing with decreasing tip radius. Structural relaxation was found to increase the yield stress and decrease the variability in the data, indicating ``structural homogenization'' with annealing. Statistical analysis of the data was employed to estimate the shear transformation zone (STZ) size. Results of this analysis indicate an STZ size of similar to 25 atoms, which increases to similar to 34 atoms upon annealing. These observations are discussed in terms of internal structure changes that occur during structural relaxation and their interaction with the stressed volumes in spherical indentation of a metallic glass. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The overall elastic response of a bundle of coated cylinders is a major aspect of thermal, nuclear and automotive engineering designs. This paper extends the previous work on tubular bundles to assess the effect of coating material and thickness. A major contribution from this paper is determining the overall transverse elastic response of coated thick cylinders by extending the Michell stress function approach in conjunction with contact mechanics. Finite element results using contact elements pave the way for applying the contact stress boundary conditions for Michell analysis. Theoretical and finite element analyses overall give results consistent with the previous work, and the results also fall within the well-established Voigt-Reuss bounds. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adhesive interaction between impacting bodies can cause energy loss, even in an otherwise elastic impact. Adhesion force induces tensile stress in the bodies, which modifies the stress wave profile and influences the restitution behavior. We investigate this effect by developing a finite element framework, which incorporates a Lennard-Jones-type potential for modeling the adhesive interaction between volume elements. With this framework, the classical problems in contact mechanics can be revisited without the restrictive surface-force approximation. In this paper, we study the longitudinal impact of an elastic cylinder on a rigid half-space with adhesion. In the absence of adhesion, this problem reduces to the impact between two identical cylinders in which there is no energy loss. Adhesion causes a fraction of energy in the stress waves to remain in the cylinder as residual stress waves. This apparent loss in kinetic energy is shown to be a unique function of maximum tensile strain energy. We have developed a 1-D model in terms of interaction force parameters, velocity and material properties to estimate the tensile stain energy. We show that this model can be used to predict practically important phenomena like capture wherein the impacting bodies stick together. (C) 2013 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isochromatic patterns in the vicinity of frictional contacts furnish vital clues for characterizing friction. Though friction effects are evident in a diametrally loaded circular disk, three-point loading provides better results towards highlighting friction. In this paper, a new method of characterizing friction at loading contacts using photoelastic isochromatics patterns is presented. Location of isotropic points (IPs) formed in three-point and four-point loadings of circular disk is used as a main tool to quantify the friction component using theoretical analysis. Bifurcation of isochromatic fringe loops near the distributed loads is explained by the presence of anti-symmetric Hertzian shear traction in addition to Hertzian normal traction. The classical solution by Flamant for point load at the edge of half plane is used to derive stresses in circular disk for all required loading configurations. A semicircualr ring under three-point loading is examined using photoelasticity to understand the isochromatics pattern theoretically by considering normal and shear traction components at loaded regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Friction coefficient between a circular-disk periphery and V-block surface was determined by introducing the concept of isotropic point (IP) in isochromatic field of the disk under three-point symmetric loading. IP position on the symmetry axis depends on active coefficient of friction during experiment. We extend this work to asymmetric loading of circular disk in which case two frictional contact pairs out of three loading contacts, independently control the unconstrained IP location. Photoelastic experiment is conducted on particular case of asymmetric three-point loading of circular disk. Basics of digital image processing are used to extract few essential parameters from experimental image, particularly IP location. Analytical solution by Flamant for half plane with a concentrated load, is utilized to derive stress components for required loading configurations of the disk. IP is observed, in analytical simulations of three-point asymmetric normal loading, to move from vertical axis to the boundary along an ellipse-like curve. When friction is included in the analysis, IP approaches the center with increase in loading friction and it goes away with increase in support friction. With all these insights, using experimental IP information, friction angles at three contact pairs of circular disk under asymmetric loading, are determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-Abelian quantum Hall states are characterized by the simultaneous appearance of charge and neutral gapless edge modes, with the structure of the latter being intricately related to the existence of bulk quasiparticle excitations obeying non-Abelian statistics. Here we propose a scenario for detecting the neutral modes by having two point contacts in series separated by a distance set by the thermal equilibration length of the charge mode. We show that by using the first point contact as a heating device, the excess charge noise measured at the second point contact carries a nontrivial signature of the presence of the neutral mode. We also obtain explicit expressions for the thermal conductance and corresponding Lorentz number for transport across a quantum point contact between two edges held at different temperatures and chemical potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new scheme for the use of constraints in setting up classical, Hamiltonian, relativistic, interacting particle theories. We show that it possesses both Poincaré invariance and invariance of world lines. We discuss the transition to the physical phase space and the nonrelativistic limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquids of silver-copper alloys with near eutectic compositions embedded in a copper matrix were undercooled. The structural and microstructural investigations of these alloys solidified from undercooled temperature indicated the absence of both the eutectic reaction and diffusionless transformation below the equal free energy curve (T0). Instead the liquid maintained local equilibrium with the copper dendrites continuously until it intersected the extended solidus of the silver rich solid solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In closed-die forging the flash geometry should be such as to ensure that the cavity is completely filled just as the two dies come into contact at the parting plane. If metal is caused to extrude through the flash gap as the dies approach the point of contact — a practice generally resorted to as a means of ensuring complete filling — dies are unnecessarily stressed in a high-stress regime (as the flash is quite thin and possibly cooled by then), which reduces the die life and unnecessarily increases the energy requirement of the operation. It is therefore necessary to carefully determine the dimensions of the flash land and flash thickness — the two parameters, apart from friction at the land, which control the lateral flow. The dimensions should be such that the flow into the longitudinal cavity is controlled throughout the operation, ensuring complete filling just as the dies touch at the parting plane. The design of the flash must be related to the shape and size of the forging cavity as the control of flow has to be exercised throughout the operation: it is possible to do this if the mechanics of how the lateral extrusion into the flash takes place is understood for specific cavity shapes and sizes. The work reported here is part of an ongoing programme investigating flow in closed-die forging. A simple closed shape (no longitudinal flow) which may correspond to the last stages of a real forging operation is analysed using the stress equilibrium approach. Metal from the cavity (flange) flows into the flash by shearing in the cavity in one of the three modes considered here: for a given cavity the mode with the least energy requirement is assumed to be the most realistic. On this basis a map has been developed which, given the depth and width of the cavity as well as the flash thickness, will tell the designer of the most likely mode (of the three modes considered) in which metal in the cavity will shear and then flow into the flash gap. The results of limited set of experiments, reported herein, validate this method of selecting the optimum model of flow into the flash gap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-dimensional axisymmetric problem of solidification of a superheated liquid in a long cylindrical mold has been studied in this paper by employing a new embedding technique. The mold and the melt has an imperfect contact and the heat transfer coefficient has been taken as a function of space and time. Short-time exact analytical solutions for the moving boundary and temperature distributions in the liquid, solid and mold have been obtained. The numerical results indicate that with the present solution, for some parameter values, substantial solidified thickness can be obtained. The method of solution is simple and straightforward, and consists of assuming fictitious initial temperatures for some suitable fictitious extensions of the actual regions. Sufficient conditions for the commencement of the solidification have been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that within the framework of a linear five-level quasi-geostrophic steady state global model the middle latitude systems can always have significant influence on the Asian summer monsoonal system through the lower tropospheric monsoonal westerly window region around 80°E. It is hypothesized that quasistationarity of the middle latitude longwave systems results in stronger teleconnections through this window and the consequent monsoon breaks when the phase is right.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study transport across a point contact separating two line junctions in a nu = 5/2 quantum Hall system. We analyze the effect of inter-edge Coulomb interactions between the chiral bosonic edge modes of the half-filled Landau level (assuming a Pfaffian wave function for the half-filled state) and of the two fully filled Landau levels. In the presence of inter-edge Coulomb interactions between all the six edges participating in the line junction, we show that the stable fixed point corresponds to a point contact that is neither fully opaque nor fully transparent. Remarkably, this fixed point represents a situation where the half-filled level is fully transmitting, while the two filled levels are completely backscattered; hence the fixed point Hall conductance is given by G(H) = 1/2e(2)/h. We predict the non-universal temperature power laws by which the system approaches the stable fixed point from the two unstable fixed points corresponding to the fully connected case (G(H) = 5/2e(2)/h) and the fully disconnected case (G(H) = 0).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Galerkin representations and integral representations are obtained for the linearized system of coupled differential equations governing steady incompressible flow of a micropolar fluid. The special case of 2-dimensional Stokes flows is then examined and further representation formulae as well as asymptotic expressions, are generated for both the microrotation and velocity vectors. With the aid of these formulae, the Stokes Paradox for micropolar fluids is established.