106 resultados para contact forces

em Indian Institute of Science - Bangalore - Índia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A two-dimensional model is proposed for taking into account the establishment of contact on the compression side of crack faces in plates under bending. An approximate but simple method is developed for evaluating reduction of stress intensity factor due to such ‘crack closure’. Analysis is first carried out permitting interference of the crack faces. Contact forces are then introduced on the crack faces and their magnitudes determined from the consideration that the interference is just eliminated. The method is based partly on finite element analysis and partly on a continuum analysis using Irwin's solution for point loads on the crack line.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wheel bearings play a crucial role in the mobility of a vehicle by minimizing motive power loss and providing stability in cornering maneuvers. Detailed engineering analysis of a wheel bearing subsystem under dynamic conditions poses enormous challenges due to the nonlinearity of the problem caused by multiple factional contacts between rotating and stationary parts and difficulties in prediction of dynamic loads that wheels are subject to. Commonly used design methodologies are based on equivalent static analysis of ball or roller bearings in which the latter elements may even be represented with springs. In the present study, an advanced hybrid approach is suggested for realistic dynamic analysis of wheel bearings by combining lumped parameter and finite element modeling techniques. A validated lumped parameter representation serves as an efficient tool for the prediction of radial wheel load due to ground reaction which is then used in detailed finite element analysis that automatically accounts for contact forces in an explicit formulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a practical situation, it is difficult to model exact contact conditions clue to challenges involved in the estimation of contact forces, and relative displacements between the contacting bodies. Sliding and seizure conditions were simulated on first-of-a-kind displacement controlled system. Self-mated stainless steels have been investigated in detail. Categorization of contact conditions prevailing at the contact interface has been carried out based on the variation of coefficient of friction with number of cycles, and three-dimensional fretting loops. Surface and subsurface micro-cracks have been observed, and their characteristic shows strong dependence on loading conditions. Existence of shear bands in the subsurface region has been observed for high strain and low strain rate loading conditions. Studies also include the influence of initial surface roughness on the damage under two extreme contact conditions. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Density distribution, fluid structure and solvation forces for fluids confined in Janus slit-shaped pores are investigated using grand canonical Monte Carlo simulations. By varying the degree of asymmetry between the two smooth surfaces that make up the slit pores, a wide variety of adsorption situations are observed. The presence of one moderately attractive surface in the asymmetric pore is sufficient to disrupt the formation of frozen phases observed in the symmetric case. In the extreme case of asymmetry in which one wall is repulsive, the pore fluid can consist of a frozen contact layer at the attractive surface for smaller surface separations (H) or a frozen contact layer with liquid-like and gas-like regions as the pore width is increased. The superposition approximation, wherein the solvation pressure and number density in the asymmetric pores can be obtained from the results on symmetric pores, is found to be accurate for H > 4 sigma(ff), where sigma(ff) is the Lennard-Jones fluid diameter and within 10% accuracy for smaller surface separations. Our study has implications in controlling stick slip and overcoming static friction `stiction' in micro and nanofluidic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An arbitrary Lagrangian-Eulerian (ALE) finite element scheme for computations of soluble surfactant droplet impingement on a horizontal surface is presented. The numerical scheme solves the time-dependent Navier-Stokes equations for the fluid flow, scalar convection-diffusion equation for the surfactant transport in the bulk phase, and simultaneously, surface evolution equations for the surfactants on the free surface and on the liquid-solid interface. The effects of surfactants on the flow dynamics are included into the model through the surface tension and surfactant-dependent dynamic contact angle. In particular, the dynamic contact angle (theta(d)) of the droplet is defined as a function of the surfactant concentration at the contact line and the equilibrium contact angle (theta(0)(e)) of the clean surface using the nonlinear equation of state for surface tension. Further, the surface forces are included into the model as surface divergence of the surface stress tensor that allows to incorporate the Marangoni effects without calculating the surface gradient of the surfactant concentration on the free surface. In addition to a mesh convergence study and validation of the numerical results with experiments, the effects of adsorption and desorption surfactant coefficients on the flow dynamics in wetting, partially wetting and non-wetting droplets are studied in detail. It is observed that the effects of surfactants are more in wetting droplets than in the non-wetting droplets. Further, the presence of surfactants at the contact line reduces the equilibrium contact angle further when theta(0)(e) is less than 90 degrees, and increases it further when theta(0)(e) is greater than 90 degrees. Nevertheless, the presence of surfactants has no effect on the contact angle when theta(0)(e) = 90 degrees. The numerical study clearly demonstrates that the surfactant-dependent contact angle has to be considered, in addition to the Marangoni effect, in order to study the flow dynamics and the equilibrium states of surfactant droplet impingement accurately. The proposed numerical scheme guarantees the conservation of fluid mass and of the surfactant mass accurately. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a non-contact technique to apply calibrated and localized forces in the micro-Newton to milli-Newton range using an air microjet. An electromagnetically actuated diaphragm controlled by a signal generator is used to generate the air microjet. With a nozzle diameter of 150 mu m, the microjet diameter was maintained to a maximum of 1 mm at a distance of 5 mm from the nozzle. The force generated by the microjet was measured using a commercial force sensor to determine the velocity profile of the jet. Axial flow velocities of up to 25 m s(-1) were obtained at distances as long as 6 mm. The microjet exerted a force up to 1 mu N on a poly dimethyl siloxane (PDMS) micropillar (50 mu m in diameter, 157 mu m in height) and 415 mu N on a PDMS membrane (3 mm in diameter, 28 mu m thick). We also demonstrate that from a distance of 6 mm our microjet can exert a peak pressure of 187 Pa with a total force of about 84 mu N on a flat surface with 8 V operating voltage. Out of the cleanroom fabrication and robust design make this system cost effective and durable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the first atomistic simulation of two stacked nucleosome core particles (NCPs), with an aim to understand, in molecular detail, how they interact, the effect of salt concentration, and how different histone tails contribute to their interaction, with a special emphasis on the H4 tail, known to have the largest stabilizing effect on the NCP-NCP interaction. We do not observe specific K16-mediated interaction between the H4 tail and the H2A-H2B acidic patch, in contrast with the findings from crystallographic studies, but find that the stacking was stable even in the absence of this interaction. We perform simulations with the H4 tail (partially/completely) removed and find that the region between LYS-16 and LYS-20 of the H4 tail holds special importance in mediating the inter-NCP interaction. Performing similar tail-clipped simulations with the H3 tail removed, we compare the roles of the H3 and H4 tails in maintaining the stacking. We discuss the relevance of our simulation results to the bilayer and other liquid-crystalline phases exhibited by NCPs in vitro and, through an analysis of the histone-histone interface, identify the interactions that could possibly stabilize the inter-NCP interaction in these columnar mesophases. Through the mechanical disruption of the stacked nucleosome system using steered molecular dynamics, we quantify the strength of inter-NCP stacking in the presence and absence of salt. We disrupt the stacking at some specific sites of internucleosomal tail-DNA contact and perform a comparative quantification of the binding strengths of various tails in stabilizing the stacking. We also examine how hydrophobic interactions may contribute to the overall stability of the stacking and find a marked difference in the role of hydrophobic forces as compared with electrostatic forces in determining the stability of the stacked nucleosome system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-Abelian quantum Hall states are characterized by the simultaneous appearance of charge and neutral gapless edge modes, with the structure of the latter being intricately related to the existence of bulk quasiparticle excitations obeying non-Abelian statistics. Here we propose a scenario for detecting the neutral modes by having two point contacts in series separated by a distance set by the thermal equilibration length of the charge mode. We show that by using the first point contact as a heating device, the excess charge noise measured at the second point contact carries a nontrivial signature of the presence of the neutral mode. We also obtain explicit expressions for the thermal conductance and corresponding Lorentz number for transport across a quantum point contact between two edges held at different temperatures and chemical potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquids of silver-copper alloys with near eutectic compositions embedded in a copper matrix were undercooled. The structural and microstructural investigations of these alloys solidified from undercooled temperature indicated the absence of both the eutectic reaction and diffusionless transformation below the equal free energy curve (T0). Instead the liquid maintained local equilibrium with the copper dendrites continuously until it intersected the extended solidus of the silver rich solid solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-dimensional axisymmetric problem of solidification of a superheated liquid in a long cylindrical mold has been studied in this paper by employing a new embedding technique. The mold and the melt has an imperfect contact and the heat transfer coefficient has been taken as a function of space and time. Short-time exact analytical solutions for the moving boundary and temperature distributions in the liquid, solid and mold have been obtained. The numerical results indicate that with the present solution, for some parameter values, substantial solidified thickness can be obtained. The method of solution is simple and straightforward, and consists of assuming fictitious initial temperatures for some suitable fictitious extensions of the actual regions. Sufficient conditions for the commencement of the solidification have been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study transport across a point contact separating two line junctions in a nu = 5/2 quantum Hall system. We analyze the effect of inter-edge Coulomb interactions between the chiral bosonic edge modes of the half-filled Landau level (assuming a Pfaffian wave function for the half-filled state) and of the two fully filled Landau levels. In the presence of inter-edge Coulomb interactions between all the six edges participating in the line junction, we show that the stable fixed point corresponds to a point contact that is neither fully opaque nor fully transparent. Remarkably, this fixed point represents a situation where the half-filled level is fully transmitting, while the two filled levels are completely backscattered; hence the fixed point Hall conductance is given by G(H) = 1/2e(2)/h. We predict the non-universal temperature power laws by which the system approaches the stable fixed point from the two unstable fixed points corresponding to the fully connected case (G(H) = 5/2e(2)/h) and the fully disconnected case (G(H) = 0).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Railway wheel vibrations are caused by a number of mechanisms. Two of these are considered: (a) gravitational load reaction acting on different points of the wheel rim, as the wheel rolls on, and (b) random fluctuating forces generated at the contact patch by roughness on the mating surfaces of the wheel and rail. The wheel is idealized as a thin ring, and the analysis is limited to a single wheel rolling on a rail. It is shown that the first mechanism results in a stationary pattern of vibration, which would not radiate any sound. The acceleration caused by roughness-excited forces is much higher at higher frequencies, but is of the same order as that caused by load reaction at lower frequencies. The computed acceleration level (and hence the radiated SPL) caused by roughness is comparable with the observed values, and is seen to increase by about 10 dB for a doubling of the wagon speed. The driving point impedance of the periodic rail-sleeper system at the contact patch, which is used in the analysis, is derived in a companion paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study small vibrations of cantilever beams contacting a rigid surface. We study two cases: the first is a beam that sags onto the ground due to gravity, and the second is a beam that sticks to the ground through reversible adhesion. In both cases, the noncontacting length varies dynamically. We first obtain the governing equations and boundary conditions, including a transversality condition involving an end moment, using Hamilton's principle. Rescaling the variable length to a constant value, we obtain partial differential equations with time varying coefficients, which, upon linearization, give the natural frequencies of vibration. The natural frequencies for the first case (gravity without adhesion) match that of a clamped-clamped beam of the same nominal length; frequencies for the second case, however, show no such match. We develop simple, if atypical, single degree of freedom approximations for the first modes of these two systems, which provide insights into the role of the static deflection profile, as well as the end moment condition, in determining the first natural frequencies of these systems. Finally, we consider small transverse sinusoidal forcing of the first case and find that the governing equation contains both parametric and external forcing terms. For forcing at resonance, w find that either the internal or the external forcing may dominate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A strain gauge load cell with separate bridges for measurement of the pull and the bending moment in the plane containing the net neck load and pull was developed and fixed in the longitudinal member of an experimental cart. A cart fitted first with pneumatic wheels and then with steel-rimmed wooden wheels was tested on three terrains—tar road, mud road and grassy terrain. Pull vs time and moment vs time records were obtained in each test and analysed. It is found that the bullocks pull the cart rather discontinuously at the low velocities at which these carts normally operate. On the tar road and the grassy terrain, the mean static coefficient of friction is significantly higher for the cart with steelrimmed wooden wheels. The dynamic frictional resistance of the terrain for the cart with steel-rimmed wooden wheels is lower than for the cart with pneumatic wheels so long as the wheels do not dig or sink into the terrain. The fluctuation in the neck load is lower in the cart fitted with pneumatic wheels. Also, the ground-induced low-amplitude high-frequency vibratory load content in the neck load is lower in the cart with pneumatic wheels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Finite Element Method (FEM) has made a number of otherwise intractable problems solvable. An important aspect for achieving an economical and accurate solution through FEM is matching the formulation and the computational organisation to the problem. This was realised forcefully in the present case of the solution of a class of moving contact boundary value problems of fastener joints. This paper deals with the problem of changing contact at the pin-hole interface of a fastener joint. Due to moving contact, the stresses and displacements are nonlinear with load. This would, in general, need an interactive-incremental approach for solution. However, by posing the problem in an inverse way, a solution is sought for obtaining loads to suit given contact configuration. Numerical results are given for typical isotropic and composite plates with rigid pins. Two cases of loading are considered: (i) load applied only at the edges of the plate and (ii) load applied at the pin and reacted at a part of the edge of the plate. Load-contact relationships, compliance and stress-patterns are investigated. This paper clearly demonstrates the simplification achieved by a suitable formulation of the problem. The results are of significance to the design and analysis of fastener joints.