2 resultados para concurrence
em Indian Institute of Science - Bangalore - Índia
Resumo:
We compute concurrence and negativity as measures of two-spin entanglement generated by a power-law quench (characterized by a rate tau(-1) and an exponent alpha) which takes an anisotropic XY chain in a transverse field through a quantum critical point (QCP). We show that only spins separated by an even number of lattice spacings get entangled in such a process. Moreover, there is a critical rate of quench, tau(-1)(c), above which no two-spin entanglement is generated; the entire entanglement is multipartite. The ratio of the entanglements between consecutive even neighbors can be tuned by changing the quench rate. We also show that for large tau, the concurrence (negativity) scales as root alpha/tau(alpha/tau), and we relate this scaling behavior to defect production by the quench through a QCP.
Resumo:
The violation of the Svetlichny's inequality (SI) [Phys. Rev. D 35, 3066 (1987)] is sufficient but not necessary for genuine tripartite nonlocal correlations. Here we quantify the relationship between tripartite entanglement and the maximum expectation value of the Svetlichny operator (which is bounded from above by the inequality) for the two inequivalent subclasses of pure three-qubit states: the Greenberger-Horne-Zeilinger (GHZ) class and the W class. We show that the maximum for the GHZ-class states reduces to Mermin's inequality [Phys. Rev. Lett. 65, 1838 (1990)] modulo a constant factor, and although it is a function of the three tangle and the residual concurrence, large numbers of states do not violate the inequality. We further show that by design SI is more suitable as a measure of genuine tripartite nonlocality between the three qubits in the W-class states,and the maximum is a certain function of the bipartite entanglement (the concurrence) of the three reduced states, and only when their sum attains a certain threshold value do they violate the inequality.