32 resultados para computer vision, geometric variations, congealing, unsupervised image alignment
em Indian Institute of Science - Bangalore - Índia
Resumo:
A new technique is proposed for multisensor image registration by matching the features using discrete particle swarm optimization (DPSO). The feature points are first extracted from the reference and sensed image using improved Harris corner detector available in the literature. From the extracted corner points, DPSO finds the three corresponding points in the sensed and reference images using multiobjective optimization of distance and angle conditions through objective switching technique. By this, the global best matched points are obtained which are used to evaluate the affine transformation for the sensed image. The performance of the image registration is evaluated and concluded that the proposed approach is efficient.
Resumo:
Color displays used in image processing systems consist of a refresh memory buffer storing digital image data which are converted into analog signals to display an image by driving the primary color channels (red, green, and blue) of a color television monitor. The color cathode ray tube (CRT) of the monitor is unable to reproduce colors exactly due to phosphor limitations, exponential luminance response of the tube to the applied signal, and limitations imposed by the digital-to-analog conversion. In this paper we describe some computer simulation studies (using the U*V*W* color space) carried out to measure these reproduction errors. Further, a procedure to correct for color reproduction error due to the exponential luminance response (gamma) of the picture tube is proposed, using a video-lookup-table and a higher resolution digital-to-analog converter. It is found, on the basis of computer simulation studies, that the proposed gamma correction scheme is effective and robust with respect to variations in the assumed value of the gamma.
Resumo:
In this paper, we present a growing and pruning radial basis function based no-reference (NR) image quality model for JPEG-coded images. The quality of the images are estimated without referring to their original images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity factors such as edge amplitude, edge length, background activity and background luminance. Image quality estimation involves computation of functional relationship between HVS features and subjective test scores. Here, the problem of quality estimation is transformed to a function approximation problem and solved using GAP-RBF network. GAP-RBF network uses sequential learning algorithm to approximate the functional relationship. The computational complexity and memory requirement are less in GAP-RBF algorithm compared to other batch learning algorithms. Also, the GAP-RBF algorithm finds a compact image quality model and does not require retraining when the new image samples are presented. Experimental results prove that the GAP-RBF image quality model does emulate the mean opinion score (MOS). The subjective test results of the proposed metric are compared with JPEG no-reference image quality index as well as full-reference structural similarity image quality index and it is observed to outperform both.
Resumo:
Image and video filtering is a key image-processing task in computer vision especially in noisy environment. In most of the cases the noise source is unknown and hence possess a major difficulty in the filtering operation. In this paper we present an error-correction based learning approach for iterative filtering. A new FIR filter is designed in which the filter coefficients are updated based on Widrow-Hoff rule. Unlike the standard filter the proposed filter has the ability to remove noise without the a priori knowledge of the noise. Experimental result shows that the proposed filter efficiently removes the noise and preserves the edges in the image. We demonstrate the capability of the proposed algorithm by testing it on standard images infected by Gaussian noise and on a real time video containing inherent noise. Experimental result shows that the proposed filter is better than some of the existing standard filters
Resumo:
Large variations in human actions lead to major challenges in computer vision research. Several algorithms are designed to solve the challenges. Algorithms that stand apart, help in solving the challenge in addition to performing faster and efficient manner. In this paper, we propose a human cognition inspired projection based learning for person-independent human action recognition in the H.264/AVC compressed domain and demonstrate a PBL-McRBEN based approach to help take the machine learning algorithms to the next level. Here, we use gradient image based feature extraction process where the motion vectors and quantization parameters are extracted and these are studied temporally to form several Group of Pictures (GoP). The GoP is then considered individually for two different bench mark data sets and the results are classified using person independent human action recognition. The functional relationship is studied using Projection Based Learning algorithm of the Meta-cognitive Radial Basis Function Network (PBL-McRBFN) which has a cognitive and meta-cognitive component. The cognitive component is a radial basis function network while the Meta-Cognitive Component(MCC) employs self regulation. The McC emulates human cognition like learning to achieve better performance. Performance of the proposed approach can handle sparse information in compressed video domain and provides more accuracy than other pixel domain counterparts. Performance of the feature extraction process achieved more than 90% accuracy using the PTIL-McRBFN which catalyzes the speed of the proposed high speed action recognition algorithm. We have conducted twenty random trials to find the performance in GoP. The results are also compared with other well known classifiers in machine learning literature.
Resumo:
In this paper, we propose a technique for video object segmentation using patch seams across frames. Typically, seams, which are connected paths of low energy, are utilised for retargeting, where the primary aim is to reduce the image size while preserving the salient image contents. Here, we adapt the formulation of seams for temporal label propagation. The energy function associated with the proposed video seams provides temporal linking of patches across frames, to accurately segment the object. The proposed energy function takes into account the similarity of patches along the seam, temporal consistency of motion and spatial coherency of seams. Label propagation is achieved with high fidelity in the critical boundary regions, utilising the proposed patch seams. To achieve this without additional overheads, we curtail the error propagation by formulating boundary regions as rough-sets. The proposed approach out-perform state-of-the-art supervised and unsupervised algorithms, on benchmark datasets.
Resumo:
We describe a novel method for human activity segmentation and interpretation in surveillance applications based on Gabor filter-bank features. A complex human activity is modeled as a sequence of elementary human actions like walking, running, jogging, boxing, hand-waving etc. Since human silhouette can be modeled by a set of rectangles, the elementary human actions can be modeled as a sequence of a set of rectangles with different orientations and scales. The activity segmentation is based on Gabor filter-bank features and normalized spectral clustering. The feature trajectories of an action category are learnt from training example videos using dynamic time warping. The combined segmentation and the recognition processes are very efficient as both the algorithms share the same framework and Gabor features computed for the former can be used for the later. We have also proposed a simple shadow detection technique to extract good silhouette which is necessary for good accuracy of an action recognition technique.
Resumo:
We propose two texture-based approaches, one involving Gabor filters and the other employing log-polar wavelets, for separating text from non-text elements in a document image. Both the proposed algorithms compute local energy at some information-rich points, which are marked by Harris' corner detector. The advantage of this approach is that the algorithm calculates the local energy at selected points and not throughout the image, thus saving a lot of computational time. The algorithm has been tested on a large set of scanned text pages and the results have been seen to be better than the results from the existing algorithms. Among the proposed schemes, the Gabor filter based scheme marginally outperforms the wavelet based scheme.
Resumo:
3D Face Recognition is an active area of research for past several years. For a 3D face recognition system one would like to have an accurate as well as low cost setup for constructing 3D face model. In this paper, we use Profilometry approach to obtain a 3D face model.This method gives a low cost solution to the problem of acquiring 3D data and the 3D face models generated by this method are sufficiently accurate. We also develop an algorithm that can use the 3D face model generated by the above method for the recognition purpose.
Resumo:
Scenic word images undergo degradations due to motion blur, uneven illumination, shadows and defocussing, which lead to difficulty in segmentation. As a result, the recognition results reported on the scenic word image datasets of ICDAR have been low. We introduce a novel technique, where we choose the middle row of the image as a sub-image and segment it first. Then, the labels from this segmented sub-image are used to propagate labels to other pixels in the image. This approach, which is unique and distinct from the existing methods, results in improved segmentation. Bayesian classification and Max-flow methods have been independently used for label propagation. This midline based approach limits the impact of degradations that happens to the image. The segmented text image is recognized using the trial version of Omnipage OCR. We have tested our method on ICDAR 2003 and ICDAR 2011 datasets. Our word recognition results of 64.5% and 71.6% are better than those of methods in the literature and also methods that competed in the Robust reading competition. Our method makes an implicit assumption that degradation is not present in the middle row.
Resumo:
Real-time object tracking is a critical task in many computer vision applications. Achieving rapid and robust tracking while handling changes in object pose and size, varying illumination and partial occlusion, is a challenging task given the limited amount of computational resources. In this paper we propose a real-time object tracker in l(1) framework addressing these issues. In the proposed approach, dictionaries containing templates of overlapping object fragments are created. The candidate fragments are sparsely represented in the dictionary fragment space by solving the l(1) regularized least squares problem. The non zero coefficients indicate the relative motion between the target and candidate fragments along with a fidelity measure. The final object motion is obtained by fusing the reliable motion information. The dictionary is updated based on the object likelihood map. The proposed tracking algorithm is tested on various challenging videos and found to outperform earlier approach.
Resumo:
Approximate Nearest Neighbour Field maps are commonly used by computer vision and graphics community to deal with problems like image completion, retargetting, denoising, etc. In this paper, we extend the scope of usage of ANNF maps to medical image analysis, more specifically to optic disk detection in retinal images. In the analysis of retinal images, optic disk detection plays an important role since it simplifies the segmentation of optic disk and other retinal structures. The proposed approach uses FeatureMatch, an ANNF algorithm, to find the correspondence between a chosen optic disk reference image and any given query image. This correspondence provides a distribution of patches in the query image that are closest to patches in the reference image. The likelihood map obtained from the distribution of patches in query image is used for optic disk detection. The proposed approach is evaluated on five publicly available DIARETDB0, DIARETDB1, DRIVE, STARE and MESSIDOR databases, with total of 1540 images. We show, experimentally, that our proposed approach achieves an average detection accuracy of 99% and an average computation time of 0.2 s per image. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Visual tracking is an important task in various computer vision applications including visual surveillance, human computer interaction, event detection, video indexing and retrieval. Recent state of the art sparse representation (SR) based trackers show better robustness than many of the other existing trackers. One of the issues with these SR trackers is low execution speed. The particle filter framework is one of the major aspects responsible for slow execution, and is common to most of the existing SR trackers. In this paper,(1) we propose a robust interest point based tracker in l(1) minimization framework that runs at real-time with performance comparable to the state of the art trackers. In the proposed tracker, the target dictionary is obtained from the patches around target interest points. Next, the interest points from the candidate window of the current frame are obtained. The correspondence between target and candidate points is obtained via solving the proposed l(1) minimization problem. In order to prune the noisy matches, a robust matching criterion is proposed, where only the reliable candidate points that mutually match with target and candidate dictionary elements are considered for tracking. The object is localized by measuring the displacement of these interest points. The reliable candidate patches are used for updating the target dictionary. The performance and accuracy of the proposed tracker is benchmarked with several complex video sequences. The tracker is found to be considerably fast as compared to the reported state of the art trackers. The proposed tracker is further evaluated for various local patch sizes, number of interest points and regularization parameters. The performance of the tracker for various challenges including illumination change, occlusion, and background clutter has been quantified with a benchmark dataset containing 50 videos. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Motivated by multi-distribution divergences, which originate in information theory, we propose a notion of `multipoint' kernels, and study their applications. We study a class of kernels based on Jensen type divergences and show that these can be extended to measure similarity among multiple points. We study tensor flattening methods and develop a multi-point (kernel) spectral clustering (MSC) method. We further emphasize on a special case of the proposed kernels, which is a multi-point extension of the linear (dot-product) kernel and show the existence of cubic time tensor flattening algorithm in this case. Finally, we illustrate the usefulness of our contributions using standard data sets and image segmentation tasks.
Resumo:
Despite significant advances in recent years, structure-from-motion (SfM) pipelines suffer from two important drawbacks. Apart from requiring significant computational power to solve the large-scale computations involved, such pipelines sometimes fail to correctly reconstruct when the accumulated error in incremental reconstruction is large or when the number of 3D to 2D correspondences are insufficient. In this paper we present a novel approach to mitigate the above-mentioned drawbacks. Using an image match graph based on matching features we partition the image data set into smaller sets or components which are reconstructed independently. Following such reconstructions we utilise the available epipolar relationships that connect images across components to correctly align the individual reconstructions in a global frame of reference. This results in both a significant speed up of at least one order of magnitude and also mitigates the problems of reconstruction failures with a marginal loss in accuracy. The effectiveness of our approach is demonstrated on some large-scale real world data sets.