11 resultados para cold rolling process

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-layered materials have been made from Cu-Fe with approximately equal volume fractions using the Accumulated Roll Bonding (ARB) technique with less than 1 μm thickness of the individual layers. The so-obtained multi-layers have been subjected to deformation by cold rolling to 25, 50, 75, 87 and 93% reduction in thickness. A detailed characterization has been carried out using X-ray diffraction (line profile analysis and texture measurement) and electron (scanning and transmission) microscopy. It has been found that Fe layers are disintegrated whereas Cu retains its continuity within a layer. Microstructural Characterization from X-Ray Line profile Analysis (XRDLPA) through Variance Method reveals that large amount of strain is initially carried by Cu layers during deformation. In the Cu-Fe layer, the texture is comparatively weaker in Cu layer and strong in Fe layers. Brass Component increases up to 75% reduction and then decreases, while the ratio of Cu/S and Bs/S remains almost constant through out the deformation. After 50% reduction, dynamic recovery is predominant as indicated by the increase in the amount of low angle grain boundaries and decrease in dislocation density. The presence of R component indicates continuous dynamic recovery and recrystallization (CDRR) at the advanced stage of deformation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The radius of an elastic-plastic boundary was measured by the strain gage method around the cold-worked region in L72-aluminum alloy. The relative radial expansion was varied from 2.5 to 6.5 percent during the cold-working process using mandrel and split sleeve. The existing theoretical studies in this area are reviewed. The experimental results are compared with existing experimental data of various investigators and with various theoretical formulations. A model is developed to predict the radius of elastic-plastic boundary, and the model is assessed by comparing with the present experiments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper deals with dynamic recrystallization (DRX), static recrystallization, and grain growth phenomena of pure magnesium after equal channel angular pressing (ECAP) by route A and B-C at 523 K (250 A degrees C) followed by 80 pct cold rolling. The ECAP-deformed and the subsequently rolled samples were annealed at 373 K and 773 K (100 A degrees C and 500 A degrees C). The associated changes in the microstructure and texture were studied using electron back-scattered diffraction. ECAP produced an average grain size of 12 to 18 A mu m with B and C-2 fiber textures. Subsequent rolling led to an average grain size 8 to 10 A mu m with basal texture fiber parallel to ND. There was no noticeable increase in the average grain size on annealing at 373 K (100 A degrees C). However, significant increase in the average grain size occurred at 773 K (500 A degrees C). The occurrence of different DRX mechanisms was detected: discontinuous dynamic recrystallization was attributed to basal slip activity and continuous dynamic recovery and recrystallization to prismatic/pyramidal slip systems. Only continuous static recrystallization could be observed on annealing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, modes I and II crack tip fields in polycrystalline plastic solids are studied under plane strain, small scale yielding conditions. Two different initial textures of an Al–Mg alloy, viz., continuous cast AA5754 sheets in the recrystallized and cold rolled conditions, are considered. The former is nearly-isotropic, while the latter displays distinct anisotropy. Finite element simulations are performed by employing crystal plasticity constitutive equations along with a Taylor-type homogenization as well as by using the Hill quadratic yield theory. It is found that significant texture evolution occurs close to the notch tip which profoundly influences the stress and plastic strain distributions. Also, the cold rolling texture gives rise to higher magnitude of plastic strain near the tip.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, modes I and II crack tip fields in polycrystalline plastic solids are studied under plane strain, small scale yielding conditions. Two different initial textures of an Al-Mg alloy, viz.,continuous cast AA5754 sheets in the recrystallized and cold rolled conditions, are considered. The former is nearly-isotropic, while the latter displays distinct anisotropy. Finite element simulations are performed by employing crystal plasticity constitutive equations along with a Taylor-type homogenization as well as by using the Hill quadratic yield theory. It is found that significant texture evolution occurs close to the notch tip which profoundly influences the stress and plastic strain distributions. Also, the cold rolling texture gives rise to higher magnitude of plastic strain near the tip. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Texture evolution in h. c. p. (alpha) phase derived from aging of a differently processed metastable b.c.c. (beta) titanium alloy was investigated. The study was aimed at examining (i) the effect of different b. c. c. cold rolling textures and (ii) the effect of different defect structures on the h. c. p transformation texture. The alloy metastable beta alloy Ti-10V-4.5Fe-1.5Al was rolled at room temperature by unidirectional (UDR) and multi-step cross rolling (MSCR). A piece of the as-rolled materials were subjected to aging in order to derive the h. c. p. (alpha) phase. In the other route, the as-rolled materials were recrystallized and then aged. Textures were measured using X-ray as well as Electron Back Scatter Diffraction. Rolling texture of beta phase, as characterized by the presence of a strong gamma fibre, was found stronger in M S C R compared to UDR, although they were qualitatively similar. The stronger texture of MSCR sample could be attributed to the inhomogeneous deformation taking place in the sample that might contribute to weakening of texture. Upon recrystallization in beta phase field close to beta-transus. the textures qualitatively resembled the corresponding beta deformation textures; however, they got strengthed. The aging of differently beta rolled samples resulted in the product alpha-phase with different textures. The (UDR + Aged) sample had a stronger texture than (MSCR + Aged) sample, which could be due to continuation of defect accumulation in UDR sample, thus providing more potential sites for the nucleation of alpha phase. The trend was reversed in samples recrystallized prior to aging. The (MSCR + Recrystallized + Aged) sample showed stronger texture of alpha phase than the (UDR + Recrystallized + Aged) sample. This could be attributed to extensive defect annihilation in the UDR sample on recrystallization prior to aging. The (MSCR + Aged) sample exhibited more alpha variants when compared to (MSCR + Recrystallized + Aged) sample. This has been attributed to the availability of more potential sites for nucleation of alpha phase in the former. It could be concluded that alpha transformation texture depends mainly on the defect structure of the parent phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of multiple phases on the evolution of texture during cold rolling and annealing of a copper-iron multilayer, fabricated by accumulative roll bonding, has been studied. The presence of an iron layer affects the deformation texture of the copper layer only at very large strains. On the other hand, a strong effect of copper on iron is observed at both small and large strains. At smaller strains, the larger deformation carried by the copper suppresses the texture development in the iron, whereas, at higher strains, selection of specific orientation relationship at the interface influences the texture of the iron layer. Shear banding and continuous dynamic recrystallization were found to influence the evolution of texture in the copper layer. The influence of large plastic deformation on the recrystallization behavior of copper is demonstrated with the suppression of typical fcc annealing texture components, described as constrained recrystallization. Evolution of typical annealing texture component is suppressed because of the multilayer microstructure. The plane of the interface formed during deformation is determined by a combination of the rolling texture of individual phases, constrained annealing, and the tendency to form a low-energy interface between the two phases during annealing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hard roller under normal load is driven by the flat surface of a soft disc. Corrugations are generated on the disc when certain surface morphological, load, speed and mechanical property-oriented conditions are met. The evolutionary process of corrugation generation and the preconditions necessary for it are investigated morphologically and mechanically for four disc materials: mild steel, brass, PTFE and PMMA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cementite dissolution in cold-drawn pearlitic steel (0.8 wt.% carbon) wires has been studied by quantitative X-ray diffraction (XRD) and Mossbauer spectroscopy up to drawing strain 1.4. Quantification of cementite-phase fraction by Rietveld analysis has confirmed more than 50% dissolution of cementite phase at drawing strain 1.4. It is found that the lattice parameter of the ferrite phase determined by Rietveld refinement procedure remains nearly unchanged even after cementite dissolution. This confirms that the carbon atoms released after cementite dissolution do not dissolve in the ferrite lattice as Fe-C interstitial solid solution. Detailed analysis of broadening of XRD line profiles for the ferrite phase shows high density of dislocations (approximate to 10(15)/m(2)) in the ferrite matrix at drawing strain 1.4. The results suggest a dominant role of 111 screw dislocations in the cementite dissolution process. Post-deformation heat treatment leads to partial annihilation of dislocations and restoration of cementite phase. Based on these experimental observations, further supplemented by TEM studies, we have suggested an alternative thermodynamic mechanism of the dissolution process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The micromechanical aspects of rolling texture development in Ni-40 wt.% Co alloy during very large reductions (up to epsilon(t) = 3.9) have been studied. The alloy showed a typical Cu-type texture up to a true strain of epsilon(t) = 3; however, the texture undergoes an abrupt transition to Bs-type on further rolling to epsilon(t) approximate to 4. (The Bs-type texture, here, comprises almost equal fractions of Goss and Bs components.) Microstructural observations, at early stages, show that deformation is accommodated entirely by slip, and very little presence of deformation twinning is observed to explain the texture transition. However, at much higher reduction levels, micrographs show a high fraction of Cu-type shear bands. These bands are predominantly found in Cu-oriented grains and the crystallites inside the shear bands are preferentially oriented towards Goss, which could explain the final texture evolution. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of various processing conditions, like annealing, poling, mechanical rolling and their combinations, on the dielectric and ferroelectric properties of PVDF poly(vinylidene fluoride)] were systematically studied in this work. Further, the effect of processing sequence on the structure and properties was investigated. While all the processing conditions adopted here resulted in phase transformation of the alpha- to electroactive beta-polymorph in PVDF, the fraction of beta-phase developed was observed to be strongly contingent on the adopted process. The transformation of alpha- to electroactive beta-polymorph was determined by X-ray diffraction and FTIR. The neat PVDF showed only beta-phase, whereas mechanically rolled samples exhibited the highest ca. 85% beta-phase in PVDF. Both the permittivity and the loss tangent decreased in the samples which had undergone different processing conditions. The polarization-electric field (P-E) loops for all the samples were evaluated. Interestingly, the energy density, estimated from the electrical displacement-electric field (D-E) loops, was observed to be highest for the poled samples which were initially rolled. The results indicate that various processing conditions can influence the dielectric and the ferroelectric properties differently.