33 resultados para cold enviornment
em Indian Institute of Science - Bangalore - Índia
Resumo:
The activity of hepatic tryptophan pyrrolase in rats exposed to cold increased rapidly and reached a maximum of three-fold at 8 h. On continued exposure up to 48 h stress, the activity partly decreased but remained at a level higher than the initial. Withdrawal from the cold stress reversed the change. Adrenalectomy or treatment with inhibitors of protein synthesis abolished the increase in the enzyme activity during cold stress indicating a possible involvement of corticosteroids and de novo protein synthesis. Treatment with drugs known to block autonomic nervous system failed to inhibit the cold-mediated increase in enzyme activity. The results suggest that the increase in enzyme activity obtained on cold exposure is mediated by corticosteroids and not by either indoleaklylamines or autonomic nervous system. The changes in the enzyme obtained under cold stress with respect to the overshoot phenomenon, relationship to the degree of stress and reversibility on withdrawal from the stress indicate the "adaptate" nature of the response.
Resumo:
The mid-December 2006 to late January 2007 flood in southern Peninsular Malaysia was the worst flood in a century and was caused by three extreme precipitation episodes. These extreme precipitation events were mainly associated with strong northeasterly winds over the South China Sea. In all cases, the northeasterlies penetrated anomalously far south and followed almost a straight trajectory. The elevated terrain over Sumatra and southern Peninsular Malaysia caused low-level convergence. The strong easterly winds near Java associated with the Rossby wave-type response to Madden-Julian Oscillation (MJO) inhibited the counter-clockwise turning of the northeasterlies and the formation of the Borneo vortex, which, in turn, enhanced the low-level convergence over the region. The abrupt termination of the Indian Ocean Dipole (IOD) in December 2006 played a secondary role as warmer equatorial Indian Ocean helped in the MJO formation.
Resumo:
1. Accumulation of ubiquinone in the livers of rats exposed to a cold environment was shown to be due to both decreased catabolism during the entire experimental period and increased synthesis during an intermediate stage (10–20 days). 2. The increased endogenous synthesis in the cold-exposed rats was eliminated when ubiquinone accumulated in the liver after exposure for 40 days (coinciding with cclimatization), or by absorption of the exogenous dietary supply, possibly by the mechanism of end-product regulation.
Resumo:
The radius of an elastic-plastic boundary was measured by the strain gage method around the cold-worked region in L72-aluminum alloy. The relative radial expansion was varied from 2.5 to 6.5 percent during the cold-working process using mandrel and split sleeve. The existing theoretical studies in this area are reviewed. The experimental results are compared with existing experimental data of various investigators and with various theoretical formulations. A model is developed to predict the radius of elastic-plastic boundary, and the model is assessed by comparing with the present experiments.
Resumo:
The deformation characteristics of stainless steel type AISI 3O4 under compression in the temperature range 20 degrees C to 600 degrees C and strain-rate range 0.001 to 100 s(-1) have been studied with a view to characterizing the flow instabilities occurring in the microstructure. At strain rates less than 5 s(-1), 304 stainless steel exhibits flow localization, whereas dynamic strain aging occurs at intermediate temperatures and below 0.5 s(-1). At room temperatures and strain rates less than 10 s(-1), martensite formation is observed. To avoid the preceding microstructural instabilities, cold and warm working should be carried out at strain rates greater than 5 s(-1). The continuum criterion, developed on the basis of the principles of maximum rate of entropy production and separability of the dissipation function, predicts accurately all the preceding instability features.
Resumo:
A fatigue crack growth rate study has been carried out on L-72 aluminium alloy plate specimens with and without cold worked holes. The cold worked specimens showed significantly increased fatigue life compared to unworked specimens. Computer software is developed to evaluate the stress intensity factor for non-uniform stress distributions using Green's function approach. The exponents for the Paris equation in the stable crack growth region for cold worked and unworked specimens are 1.26 and 3.15 respectively. The reduction in exponent value indicates the retardation in crack growth rate. An SEM study indicates more plastic deformation at the edge of the hole for unworked samples as compared to the worked samples during the crack initiation period.
Resumo:
The deformation characteristics of stainless steel type AISI 316L under compression in the temperature range 20 to 600 degrees C and strain rate range 0.001 to 100 s(-1) have been studied with a view to characterizing the flow instabilities occurring in the microstructure. At temperatures lower than 100 degrees C and strain rates higher than 0.1 s(-1), 316L stainless steel exhibits flow localization whereas dynamic strain aging (DSA) occurs at intermediate temperatures and below 1 s(-1). To avoid the above flow instabilities, cold working should be carried out at strain rates less than 0.1 s(-1). Warm working of stainless steel type AISI 316L may be done in the temperature and strain rate regime of: 300 to 400 degrees C and 0.001 s(-1) 300 to 450 degrees C and 0.01 s(-1): 450 to 600 degrees C and 0.1 s(-1); 500 degrees C and 1 s(-1) since these regions are free from flow instabilities like DSA and flow localization. The continuum criterion, developed on the basis of the principles of maximum rate of entropy production and separability of the dissipation function, predicts accurately all the above instability features.
Resumo:
The deformation characteristics of as-cast 304 stainless steel under compression in the temperature range 20-600 degrees C and strain rate range 0.001-100 s(-1) have been studied with a view to characterizing the flow instabilities occurring in the microstructure. Ar strain rates of less than 0.05 s(-1), as-cast 304 stainless steel exhibits flow localization in the temperature range 20-600 degrees C, whereas dynamic strain ageing occurs at intermediate temperatures and below 5 s(-1). At room temperatures and strain rates of less than 0.05 s(-1), martensite formation is observed. To avoid the above microstructural instabilities warm working should be carried out at strain rates greater than 10 s(-1) in the temperature range 400-600 degrees C and cold working could be done in the range of about 0.05-0.8 s(-1). The continuum criterion developed on the basis of the principles of maximum rate of entropy production and separability of the dissipation function, predicts accurately all of the above instability features. (C) 1997 Elsevier Science S.A.
Resumo:
The effect of a gas flow field on the size of raceway has been studied experimentally using a two-dimensional (2-D) cold model. It is observed that as the blast velocity from the tuyere increases, raceway size increases, and when the blast velocity is decreased from its highest value, raceway size does not change much until the velocity reaches a critical velocity. Below the critical velocity, raceway size decreases with decreasing velocity but is always larger than that for the same velocity when the velocity increased. This phenomenon is called "raceway hysteresis." Raceway hysteresis has been studied in the presence of different gas flow rates and different particle densities. Raceway hysteresis has been observed in all the experiments. The effect of liquid flow, with various superficial velocities, on raceway hysteresis has also been studied. A study of raceway size hysteresis shows that interparticle and particle-wall friction have a very large effect on raceway size. A hypothesis has been proposed to describe the hysteresis phenomenon in the packed beds. The relevance of hysteresis to blast furnace raceways has been discussed. Existing literature correlations for raceway size ignore the frictional effects. Therefore, their applicability to the ironmaking blast furnace is questionable.