175 resultados para cobalt bromide catalyst

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vapour phase oxidation of anthracene over cobalt molybdate catalyst was investigated in an isothermal flow reactor in the temperature range of 280—340°C. Fifteen different models based on redox, Langmuir—Hinshelwood and Rideal mechanisms were tested in order to elucidate the mechanism of the above reaction. These models were compared on the basis of three criteria and were finally discriminated employing the non-intrinsic parameter method. Two-stage redox mechanism was found to explain the data satisfactorily.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vapour phase oxidation of anthracene over cobalt molybdate catalyst was investigated in an isothermal flow reactor in the temperature range of 280—340°C. Fifteen different models based on redox, Langmuir—Hinshelwood and Rideal mechanisms were tested in order to elucidate the mechanism of the above reaction. These models were compared on the basis of three criteria and were finally discriminated employing the non-intrinsic parameter method. Two-stage redox mechanism was found to explain the data satisfactorily.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

While Mo in the Co-Mo/y-A1203 hydrodesulfurization catalyst is present as a sulfidic species similar to MoS2, Co shows two types of coordination, one with six sulfurs (but not a bulk sulfide) and the other with four oxygens. The significance of such species is discussed. In addition to an additive relation of the EXAFS function and the residual spectra, the ratio of amplitude terms of the catalyst and the model system has been employed in the analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By choosing appropriate microemulsion systems, hexagonal cobalt (Co) and cobalt-nickel (1:1) alloy nanoparticles have been obtained with cetyltrimethylammonium bromide as a cationic surfactant at 500 degrees C. This method thus stabilizes the hcp cobalt even at sizes (<10 nm) at which normally fcc cobalt is predicted to be stable. On annealing the hcp cobalt nanoparticles in H-2 at 700 degrees C we could transform them to fcc cobalt nanoparticles. Microscopy studies show the formation of spherical nanoparticles of hexagonal and cubic forms of cobalt and Co-Ni (1:1) alloy nanoparticles with the average size of 4, 8 and 20 nm, respectively. Electrochemical studies show that the catalytic property towards oxygen evolution is dependent on the applied voltage. At low voltage (less than 0.65 V) the Co (hexagonal) nanoparticles are superior to the alloy (Co-Ni) nanoparticles while above this voltage the alloy nanoparticles are more efficient catalysts. The nanoparticles of cobalt (hcp and fcc) and alloy (Co-Ni) nanoparticles show ferromagnetism. The saturation magnetization of Co-Ni nanoparticles is reduced compared to the bulk possibly due to surface oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A direct borohydride-hydrogen peroxide fuel cell employing carbon-supported Prussian Blue (PB) as mediated electron-transfer cathode catalyst is reported. While operating at 30 °C, the direct borohydride-hydrogen peroxide fuel cell employing carbon-supported PB cathode catalyst shows superior performance with the maximum output power density of 68 mW cm−2 at an operating voltage of 1.1 V compared to direct borohydride-hydrogen peroxide fuel cell employing the conventional gold-based cathode with the maximum output power density of 47 mW cm−2 at an operating voltage of 0.7 V. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Analysis (EDAX) suggest that anchoring of Cetyl-Trimethyl Ammonium Bromide (CTAB) as a surfactant moiety on carbon-supported PB affects the catalyst morphology. Polarization studies on direct borohydride-hydrogen peroxide fuel cell with carbon-supported CTAB-anchored PB cathode exhibit better performance with the maximum output power density of 50 mW cm−2 at an operating voltage of 1 V than the direct borohydride-hydrogen peroxide fuel cell with carbon-supported Prussian Blue without CTAB with the maximum output power density of 29 mW cm−2 at an operating voltage of 1 V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen reactivity and catalytic activity of the cobalt-containing layered defect perovskites, YBa2Cu2CoO7+delta and LaBa2Cu2CoO7+delta, in comparison with LaBa2Cu3O7-delta have been investigated employing temperature-programmed desorption (TPD) and temperature-programmed surface reactions (TPSR) in the stoichiometric and catalytic mode using carbon monoxide as a probe molecule. TPD studies showed evidence for the presence of two distinct labile oxygen species, one at (0 0 1/2) sites and the other at (0 1/2 0) sites in LaBa2Cu2CoO7+delta against a single labile species at (0 1/2 0) in the case of two other oxides. The activation energies for the catalytic oxidation of carbon monoxide by oxygen over LaBa2Cu3O7-delta, YBa2Cu2CoO7+delta, and LaBa2Cu2CoO7+delta have been estimated to be 24.2, 15.9, and 13.6 kcal/mol, respectively. The reactivity and catalytic activity of the oxide systems have been interpreted in terms of the structural changes brought about by substituents, guided by a directing effect of the larger rare earth cation. TPSR profiles, structural analysis, and infrared spectroscopic investigations suggest that the oxygen present at (0 0 1/2) sites in the case of LaBa2Cu2CoO7+delta is accessible to catalytic oxidation of CO through a Mars-Van Krevelen pathway. Catalytic conversion of CO to CO2 over LaBa2Cu2CoO7+delta occurs at 200 degrees C. The enhanced reactivity is explained in terms of changes brought about in the coordination polyhedra around transition metals, enhanced basal plane oxygen diffusivity, and redox potentials of the different transition metal cations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoassisted electrolysis of water is considered as an effective way of storing solar energy in the form of hydrogen fuel. This overall reaction involves the oxidation of water to oxygen at the anode and the reduction of protons to hydrogen at the cathode. Cobalt-phosphate-based catalyst (Co-Pi) is a potentially useful material for oxygen evolution reaction. In the present study, electrochemical deposition of Co-Pi catalyst is carried out on Au-coated quartz crystal from 0.1 M phosphate buffer (pH 7) containing 0.5 mM Co2+ ion, along with the simultaneous measurement of mass changes at the electrode surface. Cyclic voltammograms and mass variations are recorded during the course of deposition. A current peak is observed at 0.92 V vs Ag/AgCl, 3 M KCl corresponding to oxidation of Co2+ ion. The mass of the electrode starts increasing at this potential, suggesting the deposition of a Co(III)-based insoluble product on the electrode surface. The stability of the catalyst is also studied at several potentials in both buffered and nonbuffered electrolyte by monitoring the real-time mass variations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formation of an amorphous cobalt based oxygen evolution catalyst called Co-Pi has been recently reported from a neutral phosphate buffer solution containing Co2+. But the concentration of Co2+ is as low as 0.5 mM due to poor solubility of a cobalt salt in phosphate medium. In the present study, a cobalt acetate based oxygen evolution catalyst (Co-Ac) is prepared from a neutral acetate buffer solution, where the solubility of Co2+ is very high (>100 times in comparison with phosphate buffer solution). The Co-Ac possesses better catalytic activity than the Co-Pi with an additional advantage of easy bulk scale preparation. The comparative studies on the oxygen evolution reaction (OER) activity of Co-Ac and Co-Pi in phosphate and acetate buffer electrolytes reveal that the Co-Ac exhibits enhanced synergistic catalytic activity in phosphate solution, probably due to partial substitution of acetate in the catalyst layer by phosphate, resulting in the formation of a Co-Ac-Pi catalyst.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reaction of cobalt(II) perchlorate hexahydrate with a potentially tetradentate Schiff base ligand, HL (2-methoxy-6-(2-diethylaminoethylimino)methyl]phenol) in presence of sodium azide and sodium thiocyanate yields two complexes Co( L)( HL)(N-3)]center dot ClO4 ( 1) and Co( L)( HL)(NCS)] center dot ClO4 ( 2); both being characterized by different physicochemical methods. Crystal structure of 1 was determined by single crystal X-ray diffraction while that of 2 was reported earlier. In 1, the central cobalt(III) adopts slightly distorted octahedral geometry with same donor set to that of 2. Catalytic efficacy of the complexes towards epoxidation of different alkenes under aerobic condition were investigated in homogeneous medium which reveals that 1 is better catalyst than 2 with respect to alkene oxidation, reflected from the turn over frequencies (TOF) measured at an optimum temperature of 60 degrees C in acetonitrile. (C) 2014 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation of ZnO nanorod films decorated with cobalt-acetate (CoAc) electrocatalyst and its activity for photoelectrolysis of water have been demonstrated. The photochemically prepared CoAc catalyst is chemically and morphologically similar to the electrochemically prepared CoAc catalyst. The on-set potential of oxygen evolution reaction is lower on CoAc-ZnO photoanode in relation to bare ZnO photoanode. There is a three to four fold increase in photooxidation current of OER due to the presence of CoAc co-catalyst on ZnO. Thus, the photochemically prepared CoAc on ZnO is an alternative and efficient co-catalyst for photoelectrochemical oxygen evolution reaction. The enhancement in photocatalytic activity of ZnO by the CoAc catalyst photochemically deposited from acetate buffer solution is significantly greater than the cobalt-phosphate (CoPi) co-catalyst deposited from phosphate buffer solution. (C) The Author(s) 2015. Published by ECS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Co3O4 catalysts were prepared by combustion synthesis using different fuels glycine (G), ODH (O) and urea (U). Morphological changes of the materials were observed by using different fuels. The prepared catalysts were characterized by XRD, XPS, SEM, TEM, BET and DRIFTS analysis. All compounds showed 100% conversion of CO below 175C. The prepared catalysts exhibited very high stability and conversions did not decrease even after 50 h of continuous operation. The oxygen storage capacity (OSC) of materials was measured by H-2-TPR analysis. Co3O4-O is having high OSC among the synthesized catalysts. The activation energies of these catalysts were found to be in the range of 42.3-64.8 kJ mol(-1). With DRIFTS analysis, the surface carbonates, superoxide anions, adsorbed CO, O-2 species on the catalyst surface were found and this information was used to develop a detailed reaction pathway. A kinetic model was developed with the help of proposed mechanism and used to fit the data. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cobalt(II) tris(bipyridyl) complex ion encapsulated in zeolite-Y supercages exhibits a thermally driven interconversion between a low-spin and a high-spin state-a phenomenon not observed for this ion either in solid state or in solution. From a comparative study of the magnetism and optical spectroscopy of the encapsulated and unencapsulated complex ion, supported by molecular modeling, such spin behavior is shown to be intramolecular in origin. In the unencapsulated or free state, the [Co(bipy)(3)](2+) ion exhibits a marked trigonal prismatic distortion, but on encapsulation, the topology of the supercage forces it to adopt a near-octahedral geometry. An analysis using the angular overlap ligand field model with spectroscopically derived parameters shows that the geometry does indeed give rise to a low-spin ground state, and suggests a possible scenario for the spin state interconversion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydroxo-bridged homo- and hetero-trinuclear cobalt(III) complexes of the type [MII(H2O)2{(OH)2CoIII(N4)}2]X2·nH2O [MII= a divalent metal ion such as CoII, NiII or ZnII; N4=(en)2(en = ethane-1,2-diamine) or (NH3)4; X = SO4 or (ClO4)2; n= 3 or 5] have been prepared and spectroscopically characterized. The structure of [Cu{(OH)2Co(en)2}2][SO4]2·2H2O 1 has been determined. The geometry around copper atom is a pseudo-square-based pyramid, with the basal sites occupied by four bridging hydroxide oxygens and the apical site is occupied by a weakly co-ordinated sulfate anion [Cu–O 2.516(4)Å]. The hydroxo groups bridge pairs of cobalt(III) ions which are in near-octahedral environments. The ethylenediamine chelate rings have the twist conformation. In the crystal structure of [Cu{(OH)2Co(en)2}2][ClO4]4·2H2O 2 the perchlorate ion is not co-ordinated and the en ligands have envelope conformations. The sulfate ion in [Cu{(OH)2Co(NH3)4}2][SO4]2·4H2O 3 is not co-ordinated to the central copper ion. Electronic, infrared and variable-temperature EPR spectral data are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homogeneous precipitation from solution by hydrolysis of urea at elevated temperatures (T=120 degrees C) yields novel ammonia-intercalated alpha-type hydroxide phases of the formula M(OH)(x)(NH3)(0.4)(H2O)(y)(NO3)(2-x) where x=2, y=0.68 for M=Ni and x=1.85, y=0 for M=Co. These triple-layered hexagonal phases (a=3.08+/-0.01 Angstrom, c=21.7+/-0.05 Angstrom) are more crystalline than similar phases obtained by chemical precipitation or electrosynthesis. This method can be adapted as a convenient chemical route to the bulk synthesis of alpha-hydroxides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt ions-CeO2 interaction in Ce1-xPtxO2-delta (x=0.02) has been studied for the first time by electrochemical method combined with x-ray diffraction and x-ray photoelectron spectroscopy. Working electrodes made of CeO2 and Ce0.98Pt0.02O2-delta mixed with 30% carbon are treated electrochemically between 0.0-1.2 V in potentiostatic (chronoamperometry) and potentiodynamic (cyclic voltametry) mode with reference to saturated calomel electrode. Reversible oxidation of Pt-0 to Pt2+ and Pt4+ state due to the applied positive potential is coupled to simultaneous reversible reduction of Ce4+ to Ce3+ state. CeO2 reduces to CeO2-y (y=0.35) after applying 1.2 V, which is not reversible; Ce0.98Pt0.02O2-delta reaches a steady state with Pt2+:Pt4+ in the ratio of 0.60:0.40 and Ce4+:Ce3+ in the ratio of 0.55:0.45 giving a composition Ce0.98Pt0.02O1.74 at 1.2 V, which is reversible. Composition of Pt ion substituted compound is reversible between Ce0.98Pt0.02O1.95 to Ce0.98Pt0.02O1.74 within the potential range of 0.0-1.2 V. Thus, Ce0.98Pt0.02O2-delta forms a stable electrode for oxidation of H2O to O-2 unlike CeO2. A linear relation between oxidation of Pt2+ to Pt4+ with simultaneous reduction in Ce4+ to Ce3+ is observed demonstrating Pt-CeO2 metal support interaction is due to reversible Pt-0/Pt2+/Pt4+ interaction with Ce4+/Ce3+ redox couple.