170 resultados para ceramics

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as similar to 10(5) in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as similar to 10(5) in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Barium lanthanum bismuth titanate (Ba1−(3/2)xLaxBi4Ti4O15, x = 0–0.4) ceramics were fabricated using the powders synthesized via the solid-state reaction route. X-ray powder diffraction analysis confirmed the above compositions to be monophasic and belonged to the m = 4 member of the Aurivillius family of oxides. The effect of the partial presence of La3+ on Ba2+ sites on the microstructure, dielectric and relaxor behaviour of BaBi4Ti4O15 (BBT) ceramics was investigated. For the compositions pertaining to x ≤ 0.1, the dielectric constant at both room temperature and in the vicinity of the temperature of the dielectric maximum (Tm) of the parent phase (BBT) increased significantly with an increase in x while Tm remained almost constant. Tm shifted towards lower temperatures accompanied by a decrease in the magnitude of the dielectric maximum (εm) with an increase in the lanthanum content (0.1 < x ≤ 0.4). The dielectric relaxation was modelled using the Vogel–Fulcher relation and a decrease in the activation energy for frequency dispersion with increasing x was observed. The frequency dispersion of Tm was found to decrease with an increase in lanthanum doping, and for compositions corresponding to x ≥ 0.3, Tm was frequency independent. Well-developed P(polarization)–E(electric field) hysteresis loops were observed at 150 °C for all the samples and the remanent polarization (2Pr) was improved from 6.3 µC cm−2 for pure BBT to 13.4 µC cm−2 for Ba0.7La0.2Bi4Ti4O15 ceramics. Dc conductivities and associated activation energies were evaluated using impedance spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations on the phase relations and dielectric properties of (1 -x)BaTiO3 + xNd2/3TiO 3 (BNT) ceramics sintered in air below 1650 K have been carried out. X-ray powder diffraction studies indicate apparent phase singularity for compositions with x < 0.3. Nd2Ti207 is detected at higher neodymium concentrations. The unit cell parameter changes continuously with neodymium content, and BaTiO3 is completely cubic at room temperature with x -- 0.0525, whereas electron diffraction studies indicate that the air-sintered BNT ceramics with x > 0.08 contain additional phases that are partly amorphous even to an electron beam. SEM observations reveal that BaTiO3 grains are mostly covered by a molten intergranular phase, and show the presence of randomly distributed Nd2Ti207 grains. Energy dispersive X-ray analysis shows the Ba-Nd-Ti ternary composition of the intergranular phase. Differential thermal analysis studies support the formation of a partial melt involving dissolution-precipitation of boundary layers of BaTiO3 grains. These complex phase relations are accounted for in terms of the phase instability of BaTiO3 with large cation-vacancy concentration as a result of heavy Nd 3+ substitution. The absence of structural intergrowth in (1 - x)BaTiO3 + xNd2/3TiO3 under oxidative conditions leads to a separation of phases wherein the new phases undergo melting and remain X-ray amorphous. BNT ceramics with 0.1 < x < 0.3 have ~eff >~ 104 with tan 6 < 0.1 and nearly flat temperature capacitance characteristics. The grain-size dependence of ee,, variations of ~eff and tan 6 with the measuring frequency, the non-ohmic resistivities, and the non-linear leakage currents at higher field-strengths which are accompanied by the decrease in eeff and rise in tan 3, are explained on the basis of an intergranular (internal boundary layer) dielectric characteristic of these ceramics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fine powders of submicron-sized crystallites of BaTiO3 were prepared at 85–130°C by the hydrothermal method, starting from TiO2.ξH2O gel and Ba(OH)2 solution. The products obtained below 110°C incorporated considerable amounts of H2O and OH− in the lattice. As-prepared BaTiO3 is cubic and converts to the tetragonal phase after heat treatment at 1200°C, accompanied by the loss of residual OH− ions. Hydrothermal reaction of SnO2.ξH2O gel with Ba(OH)2 at 150–260°C gives rise to the hydrated phase, BaSn(OH)6.3H2O, due to the amphoteric nature of SnO2.ξH2O which stabilises Sn(OH)62− anions in basic media. On heating in air or releasing the pressure in situ at 260°C, BaSn(OH)6.3H2O converts to BaSnO3 through an intermediate, BaSnO(OH)4. Solid solutions of Ba(Ti,Sn)O3 are directly formed from (TiO2 + SnO2)..ξH2O gel up to 35 mol% SnO2. At higher Sn contents, the hydrothermal products are mixtures of BaSn(OH)6.3H2O and BaTiO3, which on annealing at 1000°C result in monophasic Ba(Ti,Sn)O3. The sintering characteristics and the dielectric properties of the ceramics prepared out of these fine powders are presented. The dielectric properties of fine-grained Ba(Ti,Sn)O3 ceramics are explained on the basis of the prevailing diffuse phase transition behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dense ZrB2-SiC (25-30 vol%) composites have been produced by reactive hot pressing using stoichiometric Zr, B4C, C and Si powder mixtures with and without Ni addition at 40 MPa, 1600 degrees C for 60 min. Nickel, a common additive to promote densification, is shown not to be essential; the presence of an ultra-fine microstructure containing a transient plastic ZrC phase is suggested to play a key role at low temperatures, while a transient liquid phase may be responsible at temperatures above 1350 degrees C. Hot Pressing of non-stoichiometric mixture of Zr, B4C and Si at 40 MPa, 1600 degrees C for 30 min resulted in ZrB2-ZrCx-SiC (15 vol%) composites of similar to 98% RD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of its high electrical conductivity and good diffusion barrier properties ruthenium dioxide (RuO2) is a good electrode material for use with ferroelectric lead zirconate-titanate (PZT) solid solutions. Under certain conditions, RuO2 can react with PZT to form lead ruthenate (Pb2Ru2O6.5) during processing at elevated temperatures resulting in lead depletion from PZT. The standard Gibbs energies of formation of RuO2 and Pb2Ru2O6.5 and activities of components of the PZT solid solution have been determined recently. Using this data along with older thermodynamic information on PbZrO3 and PbTiO3, the stability domain of Pb2Ru2O6.5 is computed as a function of PZT composition, temperature and oxygen partial pressure in the gas phase. The results show PbZrO3-rich compositions are more prone to react with RuO2 at all temperatures. Increasing temperature and decreasing oxygen partial pressure suppress the reaction. Graphically displayed are the reaction zones as a function of oxygen partial pressure and PZT composition at temperatures 973, 1173 and 1373 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed investigations into the dielectric dispersion phenomenon in the giant dielectric constant material CaCu3Ti4O12 (CCTO) around room temperature revealed the existence of two successive dielectric relaxations. In the temperature domain, a new dielectric relaxation was clearly observed around 250K, in addition to the well-investigated dielectric relaxation close to 100K. The effect of sintering and doping (La3+) on the strength of these dielectric relaxations were studied in detail. The sintering temperature as well as its duration was found to have tremendous influence on the dielectric relaxation that was encountered around 250 K. This Maxwell-Wagner (M-W) type of relaxation was found to be originating from the surface layer containing the Cu-rich phase, which was ascribed to the difference in the oxygen content between the surface and the interior of the sample. Interestingly, this particular additional relaxation was not observed in La2/3Cu3Ti4O12, a low dielectric constant member of the CCTO family, in which the segregation of Cu-rich phase on the surface was absent. Indeed the correlation between the new relaxation and the presence of Cu-rich phase in CCTO ceramics was further corroborated by the absence of the same after removing the top and bottom layers. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monophasic BaLaxBi4-xTi4O15 (x = 0, 0.2, 0.4, 0.6 and 0.8) ceramics, fabricated from the powders synthesized via the solid-state reaction route exhibited relaxor behavior. Dielectric properties of the well sintered ceramics were measured in a wide frequency range (1 kHz-1 MHz) at different temperatures (300-750 K). The temperature of dielectri maximum (T-m) was found to decrease significantly from 696 K for an undoped sample (x = 0) to 395 K for the sample corresponding to the composition x = 0.8 accompanied by a decrease in the magnitude ofdielectric maximum (epsilon(m)). The temperature variation of the dielectric constant on the high temperature slope of the peak (T > T-m) was analyzed by using the Lorentz-ype quadratic law and the diffuseness of the peak was found to increase with increasing x. Vogel-Fulcher modelling of dielectric relaxation showed a decrease in freezing temperature (T-VF) (from 678 to 340 K) and an increase in the activation energy (5 to 24 meV) for the frequency dispersion with increase in x (La-3 divided by content). Strength of frequency dispersion of the phase transition increased with lanthanum content. Polarization (P)-electric field (E) hysteresis loops recorded at 373 showed a transition from a nearly squarish to slim loop hysteresis behavior with increasing lanthanum content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical conductivity and electrical relaxation for ferroelectric Bi4Ti2.98Nb0.01Ta0.01O12 (BTNT) ceramics have been reported in the frequency range 0.1 Hz to 1 MHz and in the 300-550 degrees C temperature range. The electrical data was analyzed in the framework of the dielectric as well as the electric modulus formalisms. The bulk dc conductivity at various temperatures was extracted from the electrical relaxation data. The activation energy associated with the electrical relaxation determined from the electric modulus spectra was found to be 0.93 +/- 0.03 eV, close to that of the activation energy for dc conductivity (1.03 +/- 0.02 eV). It suggests that the movements of oxygen ions are responsible for both ionic conduction as well as the relaxation process. The pyroelectric coefficient was found to be 12 mu C m(-2) K-1 at room temperature which is higher than that of the reported value of pyroelectric coefficient for undoped Bi4Ti3O12 ceramics. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

W/Cr codoped Bi4Ti3O12 ceramics, Bi4Ti3-xWxO12+x+0.2 wt%Cr2O3 (BITWC, x=0-0.15), were prepared using a solid-state reaction method. The crystallographic evolution and phase analysis were distinctly determined focusing on the X-ray diffraction peak changes in (020)/(200) and (220)/(1115) diffraction planes, by which the lattice parameters, a, b, and c can be refined. The thermal variations of permittivity, dielectric loss (tan delta), impedance, and electrical conductivity properties were characterized. A decrease in the values of Curie temperature from 675 degrees to 640 degrees C and an increase in the values of the dielectric constant due to an increase of W6+/Cr3+ content were observed. The highest piezoelectric constant, d(33) of 22 pC/N, was achieved with the composition of Bi4Ti2.975W0.025O12.025+0.2 wt% Cr2O3. Also, this composition had a lower electrical conductivity than the other investigated compositions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

: Varistors prepared from ZnO with CaMnO3 perovskite as the only forming additive, exhibit voltage-limiting current-voltage characteristics with nonlinearity coefficient alpha up to 380 at low voltages of 1.8-12 V/mm. High nonlinearity is observed only with a suitable combination of processing parameters. The most crucial of them are (i) initial formulation of ceramics and (ii) the sintering temperature and conditions of post-sinter annealing. An electrically active intergranular phase is formed between ZnO grains with the composition ranging from Ca4Mn6Zn4O17 to Ca4Mn8Zn3O19, which creates the n-p-n heterojunctions. The low-voltage nonlinearity originates as a result of higher concentration of Mn(III)/Mn(IV) present at the grain boundary layer regions, being charge compensated by zinc vacancies. Under the external electric field, the barrier height is lowered due to the uphill diffusion of holes mediated by the acceptor states. Above the turn-on voltages, the unhindered transport of charge carriers between grains generates high current density associated with large nonlinearity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase-pure samples of barium magnesiotitanate, BaMg6Ti6O19 (BMT) are prepared by the wet chemical `gel-carbonate' method wherein the formation of BMT is complete below 950 degrees C as a result of the reaction between nanoparticles of BaCO3, MgO and TiO2. BMT powders are sintered at 1350-1450 C to dense ceramics. Extensive melting is noticed when the bulk composition falls between 0.4MgTiO(3)+0.6BaTiO(3)) and (0.6MgTiO(3)+0.4BaTiO(3)) along the MgTiO3-BaTiO3 tie-line in BaO-MgO-TiO2, phase diagram. Dielectric properties of sintered (BMT) ceramics have been investigated which showed epsilon similar or equal to 39 at 2 GHz, quality factor Q >= 10,000 and positive temperature coefficient of dielectric constant around 370 ppm degrees C-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Intelligent Decision Support System (IDSS), also called an expert system, is explained. It was then applied to choose the right composition and firing temperature of a ZnO based varistor. 17 refs.