32 resultados para cave bear
em Indian Institute of Science - Bangalore - Índia
Resumo:
Hornbills are important dispersers of a wide range of tree species. Many of these species bear fruits with large, lipid-rich seeds that could attract terrestrial rodents. Rodents have multiple effects on seed fates, many of which remain poorly understood in the Palaeotropics. The role of terrestrial rodents was investigated by tracking seed fate of five horn bill-dispersed tree species in a tropical forest in north-cast India. Seeds were marked inside and outside of exclosures below 6-12 parent fruiting trees (undispersed seed rain) and six hornbill nest trees (a post-dispersal site). Rodent visitors and seed removal ere monitored using camera traps. Our findings suggest that several rodent species. especially two species of porcupine were major on-site seed predators. Scatter-hoarding was rare (1.4%). Seeds at hornbill nest trees had lower survival compared with parent fruiting trees, indicating that clumped dispersal by hornbills may not necessarily improve seed survival. Seed survival in the presence and absence of rodents varied with tree species. Some species (e.g. Polyalthia simiarum) showed no difference, others (e.g. Dysoxylum binectariferum) experienced up to a 64%. decrease in survival in the presence of rodents. The differing magnitude of seed predation by rodents can have significant consequences at the seed establishment stage.
Resumo:
Abstract. We have used chlortetracycline (CTC) as a fluorescent probe to detect the distribution of sequestered calcium in multicellular stages of Dictyostelium discoideum. Tips of late aggregates, slugs and early culminating masses fluoresce very strongly. Most of the fluorescence is intracellular in origin and emanates from a small number of intense punctate sources. The sources correspond in part to autophagic vacuoles viz. neutral-red staining, acidic digestive vesicles, and may also include intracellular organelles; cytoplasmic fluorescence is much weaker in comparison. The level of fluorescence drops in the middle portion of slugs and rises again in the posteriormost region, though not to as high a level as in the tip. This holds good irrespective of whether CTC is applied only in the neighbourhood of the aggregate centre, only in the aggregate periphery, or to the whole aggregate. We infer that there must be a good deal of mixing in the stages leading from aggregation to slug formation; thus the serial order in which cells enter an aggregate does not bear any relation to their ultimate fates. The other implication of our study is that calcium sequestration is much more extensive in prestalk and anterior-like cells than in prespore cells. These findings are discussed with regard to possible implications for pattern formation.
Resumo:
Emerging embedded applications are based on evolving standards (e.g., MPEG2/4, H.264/265, IEEE802.11a/b/g/n). Since most of these applications run on handheld devices, there is an increasing need for a single chip solution that can dynamically interoperate between different standards and their derivatives. In order to achieve high resource utilization and low power dissipation, we propose REDEFINE, a polymorphic ASIC in which specialized hardware units are replaced with basic hardware units that can create the same functionality by runtime re-composition. It is a ``future-proof'' custom hardware solution for multiple applications and their derivatives in a domain. In this article, we describe a compiler framework and supporting hardware comprising compute, storage, and communication resources. Applications described in high-level language (e.g., C) are compiled into application substructures. For each application substructure, a set of compute elements on the hardware are interconnected during runtime to form a pattern that closely matches the communication pattern of that particular application. The advantage is that the bounded CEs are neither processor cores nor logic elements as in FPGAs. Hence, REDEFINE offers the power and performance advantage of an ASIC and the hardware reconfigurability and programmability of that of an FPGA/instruction set processor. In addition, the hardware supports custom instruction pipelining. Existing instruction-set extensible processors determine a sequence of instructions that repeatedly occur within the application to create custom instructions at design time to speed up the execution of this sequence. We extend this scheme further, where a kernel is compiled into custom instructions that bear strong producer-consumer relationship (and not limited to frequently occurring sequences of instructions). Custom instructions, realized as hardware compositions effected at runtime, allow several instances of the same to be active in parallel. A key distinguishing factor in majority of the emerging embedded applications is stream processing. To reduce the overheads of data transfer between custom instructions, direct communication paths are employed among custom instructions. In this article, we present the overview of the hardware-aware compiler framework, which determines the NoC-aware schedule of transports of the data exchanged between the custom instructions on the interconnect. The results for the FFT kernel indicate a 25% reduction in the number of loads/stores, and throughput improves by log(n) for n-point FFT when compared to sequential implementation. Overall, REDEFINE offers flexibility and a runtime reconfigurability at the expense of 1.16x in power and 8x in area when compared to an ASIC. REDEFINE implementation consumes 0.1x the power of an FPGA implementation. In addition, the configuration overhead of the FPGA implementation is 1,000x more than that of REDEFINE.
Resumo:
We present a generic theory for the dynamics of a stiff filament under tension, in an active medium with orientational correlations, such as a microtubule in contractile actin. In sharp contrast to the case of a passive medium, we find the filament can stiffen, and possibly oscillate or buckle, depending on both the contractile or tensile nature of the activity and the filament-medium anchoring interaction. We also demonstrate a strong violation of the fluctuation-dissipation (FD) relation in the effective dynamics of the filament, including a negative FD ratio. Our approach is also of relevance to the dynamics of axons, and our model equations bear a remarkable formal similarity to those in recent work [Martin P, Hudspeth AJ, Juelicher F (2001) Proc Natl Acad Sci USA 98: 14380-14385] on auditory hair cells. Detailed tests of our predictions can be made by using a single filament in actomyosin extracts or bacterial suspensions.
Resumo:
The half-sandwhich ruthenium chloro complexes bearing chelated diphosphazane ligands, [(eta(5)-Cp)RuCl{kappa(2)-P,P-(RO)(2)PN(Me)P(OR)(2)}] [R = C6H3Me2-2,6] (1) and [(eta(5)-Cp*)RuCl{kappa(2)-P, P-X2PN(R)PYY'}] [R = Me, X = Y = Y' = OC6H5 (2); R = CHMe2, X-2 = C20H12O2, Y = Y' = OC6H5 (3) or OC6H4'Bu-4 (4)] have been prepared by the reaction of CpRu(PPh3)(2)Cl with (RO)(2)PN(Me)P(OR)(2) [R = C6H3Me2-2,6 (L-1)] or by the reaction of [Cp*RuCl2](n) with X2PN(R)PYY' in the presence of zinc dust. Among the four diastereomers (two enantiomeric pairs) possible for the "chiral at metal" complexes 3 and 4, only two diastereomers (one enantiomeric pair) are formed in these reactions. The complexes 1, 2, 4 and [(eta(5)-Cp)RuCl {kappa(2)-P,P-Ph2PN((S)-*CHMePh)PPhY)] [Y = Ph (5) or N2C3HMe2-3,5 (SCSPRRu)-(6)] react with NaOMe to give the corresponding hydride complexes [(eta(5) -Cp)RuH {kappa(2)-P,P-(RO)(2)PN(Me)P(OR)(2)}] (7), [(eta(5)-Cp*)RuH {kappa(2)-P,P'-X2PN(R)PY2)] [R = Me, X = Y = OC6H5 (8); R = CHMe2, X-2 = C20H12O2, Y = OC6H4'Bu-4 (9)] and [(eta(5) -Cp)RuH(kappa(2)-P, P-Ph2PN((S)-*CHMePh)PPhY)][Y =Ph (10) or N2C3HMe2-3,5 (SCSPRRu)(11a) and (SCSPSRu)-(11b)]. Only one enantiomeric pair of the hydride 9 is obtained from the chloro precursor 4 that bears sterically bulky substituents at the phosphorus centers. On the other hand, the optically pure trichiral complex 6 that bears sterically less bulky substituents at the phosphorus gives a mixture of two diastereomers (11a and 11b). Protonation of complex 7 using different acids (HX) gives a mixture of [(eta(5)- Cp)Ru(eta(2)-H-2){kappa(2)-P, P-(RO)(2)PN(Me)P(OR)(2))]X (12a) and [(eta(5)-Cp)Ru(H)(2){kappa(2)-P, P-(RO)(2)PN(Me)P(OR)(2)}]X (12b) of which 12a is the major product independent of the acid used; the dihydrogen nature of 12a is established by T, measurements and also by synthesizing the deuteride analogue 7-D followed by protonation to obtain the D-H isotopomer. Preliminary investigations on asymmetric transfer hydrogenation of 2-acetonaphthone in the presence of a series of chiral diphosphazane ligands show that diphosphazanes in which the phosphorus centers are strong pi-acceptor in character and bear sterically bulky substituents impart moderate levels of enantioselectivity. Attempts to identify the hydride intermediate involved in the asymmetric transfer hydrogenation by a model reaction suggests that a complex of the type, [Ru(H)(Cl){kappa(2)-P,P-X2PN(R)PY2)(solvent)(2)] could be the active species in this transformation. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The formation of local structure, in short peptides has been probed by examining cleavage patterns and rates of proteolysis of designed sequences with a high tendency to form β-hairpin structures. Three model sequences which bear fluorescence donor and acceptor groups have been investigated: Dab-Gaba-Lys-Pro-Leu-Gly-Lys-Val-Xxx-Yyy-Glu-Val-Ala-Ala-Cys-Lys-NH2 ï EDANS Xxx-Yyy: Peptide 1=DPro-LPro, Peptide 2=DPro-Gly, Peptide 3=Leu-Ala Fluorescence resonance energy transfer (FRET) provides a convenient probe for peptide cleavage. MALDI mass spectrometry has been used to probe sites of cleavage and CD spectroscopy to access the overall backbone conformation using analog sequences, which lack strongly absorbing donor and acceptor groups. The proteases trypsin, subtilisin, collagenase, elastase, proteinase K and thermolysin were used for proteolysis and the rates of cleavage determined. Peptide 3 is the most susceptible to cleavage by all the enzymes except thermolysin, which cleaves all three peptides at comparable rates. Peptides 1 and 2 are completely resistant to the action of trypsin, suggesting that β-turn formation acts as a deterrent to proteolytic cleavage.
Resumo:
The addition reaction of alcohols to substituted phenylisothiocyanates is found to be a second-order reaction. The reaction is catalysed by triethylamine. First-order rate constants of the addition reaction have been determined in excess of ethanol, for a number of substituted phenylisothiocyanates and the rate data give a satisfactory linear correlation with Hammett σ constants of groups. While the energies of activation vary randomly with substitution, the entropies of activation bear a linear relationship to the energies of activation. Infra-red spectra indicate that the thiourethanes which are the products of the addition reaction exist in the thioamide form. The most prominent resonance form which can satisfactorily explain both the kinetic and infrared data, has been suggested.
Resumo:
1,3-Dipolar cycloaddition of an organic azide and an acetylenic unit,often referred to as the ``click reaction'', has become an important ligation tool both in the context of materials chemistry and biology. Thus, development of simple approaches to directly generate polymers that bear either an azide or an alkyne unit has gained considerable importance. We describe here a straightforward approach to directly prepare linear and hyperbranched polyesters that carry terminal propargyl groups. To achieve the former, we designed an AB-type monomer that carries a hydroxyl group and a propargyl ester, which upon self-condensation under standard transesterification conditions yielded a polyester that carries a single propargyl group at one of its chain-ends. Similarly, an AB(2) type monomer that carries one hydroxyl group and two propargyl ester groups, when polymerized under the same conditions yielded a hyperbranched polymer with numerous clickable'' propargyl groups at its molecular periphery. These propargyl groups can be readily clicked with different organic azides, such as benzyl azide, omega-azido heptaethyleneglycol monomethylether or 9-azidomethyl anthracene. When an anthracene chromophore is clicked, the molecular weight of the linear polyester could be readily estimated using both UV-visible and fluorescence spectroscopic measurements. Furthermore, the reactive propargyl end group could also provide an opportunity to prepare block copolymers in the case of linear polyesters and to generate nanodimensional scaffolds to anchor variety of functional units, in the case of the hyperbranched polymer. (C) 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3200-3208, 2010.
Resumo:
Superconductivity in LnBa2Cu3O7 − δ with Ln = Nd, Eu, Gdand Dy has been investigated as a function of δ, closely following the accompanying changes in crystal structure. Orthorhombic GdBa2Cu3O7 − δ and DyBa2Cu3O7 − δ show a Tc of ≈ 90 K up to δ = 0.2 and a lower Tc plateau (40–50 K) in the δ range 02 to 0.4, similar to that found in YBa2Cu3O7 − δ. The orthorhombic structure II in the lower Tc regions is different from the structure I in the 90 K Tc (low δ) region. The unit cell parameters of the orthorhombic I structure in the high Tc region bear the relationship of a a ≠ b not, vert, similar c/3. This relationship is not seen in the low Tc plateau. The low Tc plateau region does not distinctly manifest itself in NdBa2Cu3O7 − δ just as in LaBa2Cu3O7 − δ.
Resumo:
The crystal structures of two ternary metal nucleotide complexes of cobalt, [Co(en)2(H2O)2]-[Co(5?-IMP)2(H2O)4]Cl2·4H2O (1) and [Co(en)2(H2O)2][Co(5?-GMP)2(H2O)4]Cl2·4H2O (2), have been analysed by X-ray diffraction (en = ethylenediamine, 5?-IMP = inosine 5?-monophosphate, and 5?-GMP = guanosine 5?-monophosphate). Both complexes crystallize in the orthorhombic space group C2221 with a= 8.725(1), b= 25.891(5), c= 21.212(5)Å, Z= 4 for (1) and a= 8.733(2), b= 26.169(4), c= 21.288(4)Å, Z= 4 for (2). The structure of (1) was solved by the heavy-atom method, while that of (2) was deduced from (1). The structures were refined to R values of 0.09 and 0.10 for 1 546 and 1 572 reflections for (1) and (2) respectively. The two structures are isomorphous. A novel feature is that the chelate ligand en and the nucleotide are not co-ordinated to the same metal ion. One of the metal ions lying on the two-fold a axis is octahedrally co-ordinated by two chelating en molecules and two water oxygens, while the other on the two-fold b axis is octahedrally co-ordinated by two N(7) atoms of symmetry-related nucleotides in a cis position and four water oxygens. The conformations of the nucleotides are C(2?)-endo, anti, and gauche�gauche. In both (1) and (2) the charge-neutralising chloride ions are disordered in the vacant space between the molecules. These structures bear similarities to the mode of nucleotide co-ordination to PtII complexes of 6-oxopurine nucleotides, which are the proposed models for intrastrand cross-linking in DNA by a metal complex.
Resumo:
We have analyzed the set of inter and intra base pair parameters for each dinucleotide step in single crystal structures of dodecamers, solved at high and medium resolution and all crystallized in P2(1)2(1)2(1) space group. The objective was to identify whether all the structures which have either the Drew-Dickerson (DD) sequence d[CGCGAATTCGCG] with some base modification or related sequence (non-DD), would display the same sequence dependent structural variability about its palindromic sequence, despite the molecule being bent at one end because of similar crystal lattice packing effect. Most of the local doublet parameters for base pairs steps G2-C3 and G10-C11 positions, symmetrically situated about the lateral twofold, were significantly correlated between themselves. In non-DD sequences, significant correlations between these positional parameters were absent. The different range of local step parameter values at each sequence position contributed to the gross feature of smooth helix axis bending in all structures. The base pair parameters in some of the positions, for medium resolution DD sequence, were quite unlike the high-resolution set and encompassed a higher range of values. Twist and slide are the two main parameters that show wider conformational range for the middle region of non-DD sequence structures in comparison to DD sequence structures. On the contrary, the minor and major groove features bear good resemblance between DD and non-DD sequence crystal structure datasets. The sugar-phosphate backbone torsion angles are similar in all structures, in sharp contrast to base pair parameter variation for high and low resolution DD and non-DD sequence structures, consisting of unusual (epsilon =g(-), xi =t) B-II conformation at the 10(th) position of the dodecamer sequence. Thus examining DD and non-DD sequence structures packed in the same crystal lattice arrangement, we infer that inter and intra base pair parameters are as symmetrically equivalent in its value as the symmetry related step for the palindromic DD sequence about lateral two-fold axis. This feature would lead us to agree with the conclusion that DNA conformation is not substantially affected by end-to-end or lateral inter-molecular interaction due to crystal lattice packing effect. Non-DD sequence structures acquire step parameter values which reflect the altered sequence at each of the dodecamer sequence position in the orthorhombic lattice while showing similar gross features of DD sequence structures
Resumo:
Supercritical carbon dioxide is used to prepare aerogels of two reference molecular organogelators, 2,3-bis-n-decyloxyanthracene (DDOA) (luminescent molecule) and 12-hydroxystearic acid (HSA). Electron microscopy reveals the fibrillar morphology of the aggregates generated by the protocol. SAXS and SANS measurements show that DDOA aerogels are crystalline materials exhibiting three morphs: (1) arrangements of the crystalline solid (2D p6m), (2) a second hexagonal morph slightly more compact, and (3) a packing specific of the fibers in the gel. Aggregates specific of the aerogel (volume fraction being typically phi approximate to 0.60) are developed over larger distances (similar to 1000 angstrom) and bear fewer defaults and residual strains than aggregates in the crystalline and gel phases. Porod, Scherrer and Debye-Bueche analyses of the scattering data have been performed. The first five diffraction peaks show small variations in position and intensity assigned to the variation of the number of fibers and their degree of vicinity within hexagonal bundles of the related SAFIN according to the Oster model. Conclusions are supported by the guidelines offered by the analysis of the situation in HSA aerogels for which the diffraction pattern can be described by two coexisting lamellar-like arrangements. The porosity of the aerogel, as measured by its specific surface extracted from the scattering invariant analysis, is only 1.8 times less than that of the swollen gel and is characteristic of a very porous material.
Resumo:
Analysts have identified four related questions that need to be asked and answered before agreements to respond to global warming will be possible.1 Which countries bear responsibility for causing the problem? What quantities and mix of greenhouse gases should each country be allowed to emit? Which countries have the resources to do something about the problem? Where are the best opportunities for undertaking projects to respond to the problem? Failure to distinguish among these four questions, or willingness to accept superficial answers, promotes unnecessary controversy.
Resumo:
Cationic ionenes that bear electron-rich 1,5-dialkoxynaphthalene (DAN) units within the alkylene segment were allowed to interact with different types of electron-deficient, acceptor-containing molecules in an effort to realize intercalation-induced folding of the ionenes; the collapse of the chains was expected to occur in such a way that the donor and acceptor units become arranged in an alternating fashion. Several acceptor-bearing molecules were prepared by the derivatization of pyromellitic dianhydride and naphthalene tetracarboxylic dianhydride with two different oligoethylene glycol monomethyl ether monoamines. This yielded acceptor molecules with different water solubility and allowed the examination of solvophobic effects in the folding process. UV/Vis spectroscopic studies were carried out by using a 1:1 mixture of the DAN-ionenes and different acceptor molecules in water/DMSO solvent mixtures. The intensity of the charge-transfer (CT) band was seen to increase with the water content in the solvent mixture, thereby suggesting that the intercalation is indeed aided by solvophobic effects. The naphthalene diimide (NDI) bearing acceptor molecules consistently formed significantly stronger CT complexes when compared to the pyromellitic diimide (PDI) bearing acceptor molecules, which is a reflection of the stronger pi-stacking tendency of the former. AFM studies of drop-cast films of different ionene-acceptor combinations revealed that compact folded structures are formed most effectively under conditions in which the strongest CT complex is formed.
Resumo:
Five tartrate-amine complexes have been studied in terms of crystal packing and hydrogen bonding frameworks. The salts are 3-bromoanilinium-L-monohydrogen tartrate 1, 3-fluoroanilinium-D-dibenzoylmonohydrogen tartrate 2, 1-nonylium-D-dibenzoylmonohydrogen tartrate 3, 1 -decylium-D-dibenzoylmonohydrogen tartrate 4, and 1,4-diaminobutanium-D-dibenzoyl tartrate trihydrate 5. The results indicate that there are no halogen-halogen interactions in the haloaromatic-tartrate complexes. The anionic framework allows accomodation of ammonium ions that bear alkyl chain residues of variable lengths. The long chain amines in these structures remain disordered while the short chain amines form multidirectional hydrogen bonds on either side.