5 resultados para calcareous sinter, aqueduct, stable isotopes, Roman
em Indian Institute of Science - Bangalore - Índia
Resumo:
Non-pedogenic carbonates, such as carbonate cement and nodules in the sandstones, are quite common in the terrestrial geological record. Unlike pedogenic carbonates, their stable isotope ratios lack investigations for paleo-climatic reconstructions. The present investigation therefore, explores the possibility of use of stable isotope studies of non-pedogenic carbonates from the Mb-Pleistocene Siwalik Group of sediments exposed in the Ramnagar sub-basin of the NW Himalaya. Petrographic studies reveal the dominance of micrite fabric in carbonate nodules both of pedogenic and non-pedogenic samples irrespective of specific stratigraphic unit However, calcite as cement in the sandstones shows the dominance of micrite fabric in the younger in age sediments. Seventy-two non-pedogenic carbonate samples from the carbonate nodules and cement in the Siwalik sandstones, ranging in age between similar to 1 Ma and 12.2 Ma, were analyzed for delta C-13 and delta O-18 values. The delta C-13 values vary from -24.77 parts per thousand to -1.1 parts per thousand and delta O-18 values vary from -15.34 parts per thousand to -7.81 parts per thousand. Pedogenic and non-pedogenic carbonates ranging in age between similar to 1 Ma and 6 Ma have largely similar delta C-13 values and the range of delta C-13 values indicate the dominance of C-4 type of vegetation. However, unlike pedogenic carbonates which showed the dominance of C-3 type of vegetation pre- 7 Ma on the basis of delta C-13 -depleted isotopic values (Singh et al., 2011), delta C-13 values are largely enriched in the corresponding aged non-pedogenic carbonates revealing no information on specific type of vegetation. Likewise, paleoprecipitational reconstructions from delta O-18 values in pedogenic carbonates showed a progressive increase in aridity from similar to 12 Ma to recent excluding short term increases in rainfall/monsoon intensity at around 10 Ma, 5 Ma, and 1.8 Ma (Singh et al., 2012). On the contrary, such reconstructions are not possible from the delta O-18 values of non-pedogenic carbonates and indeed the delta O-18 values of non-pedogenic carbonates are largely depleted to as much as 6 parts per thousand from the corresponding pedogenic carbonates. Such differences in delta C-13 and delta O-18 values of non-pedogenic carbonates from pedogenic carbonates are primarily due to the dependence of the former on groundwater conditions responsible for precipitating carbonate. Further, a comparison of isotopic values between non-pedogenic and pedogenic carbonates can be interpreted that post-6 Ma and pre-6 Ma non-pedogenic carbonates were largely formed by shallow and deep groundwater conditions respectively. The result of these investigative studies therefore, suggests that the stable delta C-13 and delta O-18 values of non-pedogenic carbonates, unlike the pedogenic carbonates and irrespective of nature of calcite fabric, showed their little importance in paleoclimatic and paleoecological reconstructions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Silicon is the second most abundant element on the Earth and one of the more abundant elements in our Solar System. Variations in the relative abundance of the stable isotopes of Si (Si isotope fractionation) in different natural reservoirs, both terrestrial (surface and deep Earth) as well as extra-terrestrial (e.g. meteorites, lunar samples), are a powerful tracer of present and past processes involving abiotic as well as biotic systems. The versatility of the Si isotope tracer is reflected in its wide-ranging applications from understanding the origin of early Solar System objects, planetary differentiation, Moon formation, mantle melting and magma differentiation on the Earth, ancient sea-water composition, to modern-day weathering, clay formation and biological fractionation on land as well as in the oceans. The application of Si isotopes as tracers of natural processes started over six decades ago and its usage has seen a sudden increase over the last decade due to improvements in mass spectrometry, particularly the advent of multi-collector inductively coupled plasma mass spectrometers, which has made Si isotope measurements safe and relatively easy while simultaneously improving the accuracy and precision of measurements.
Resumo:
Stable isotopes from a U/Th dated aragonite stalagmite from the Central Kumaun Himalaya provide evidence of variation in climatic conditions in the last similar to 1800 years. The delta O-18 and delta C-13 values vary from -4.3 parts per thousand to -7.6 parts per thousand and -3.4 parts per thousand to -9.1 parts per thousand respectively, although the stalagmite was not grown in isotopic equilibrium with cave drip water, a clear palaeoclimatic signal in stalagmite delta O-18 values is evident based on the regional climate data. The stalagmite showed a rapid growth rate during 830-910 AD, most likely the lower part of Medieval Warm Period (MWP), and 1600-1640 AD, the middle part of Little Ice Age (LIA). Two distinct phases of reduced precipitation are marked by a 2 parts per thousand shift in 8180 values towards the end of MWP (similar to 1080-1160 AD) and after its termination from similar to 1210 to 1440 AD. The LIA (similar to 1440-1880 AD) is represented by sub-tropical climate similar to modern conditions, whereas the post-LIA was comparatively drier. The Inter Tropical Convergence Zone (ITCZ) was located over the cave location during wetter/warmer conditions. When it shifted southward, precipitation over the study area decreased. A prominent drop in delta O-18 and delta C-13 values during the post-LIA period may also have been additionally influenced by anthropogenic activity in the area. (C) 2013 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
1. How a symbiosis originates and is maintained are important evolutionary questions. Symbioses in myrmecophytes (plants providing nesting for ants) are believed to be maintained by protection and nutrients provided by specialist plant-ants in exchange for nesting spaces (called domatia) and nourishment offered by ant-plants. However, besides the benefits accrued from housing protective ants, the mechanisms contributing to the fitness advantages of bearing domatia have rarely been examined, especially because the domatia trait is usually constitutively expressed, and many myrmecophytes have obligate mutualisms with single ant species resulting in invariant conditions. 2. In the unspecialized ant-plant Humboldtia brunonis (Fabaceae) that offers extrafloral nectar to ants, only some plants produce domatia in the form of hollow internodes. These domatia have a self-opening slit making them more prone to interlopers and are occupied mostly by non-protective ants and other invertebrates, especially arboreal earthworms. The protection mutualism with ants is restricted in geographical extent, occurring only at a few sites in the southernmost part of this plant's range in the Western Ghats of India. 3. We examined nutrient flux from domatia residents to the plant using stable isotopes. We found that between 9% (earthworms) and 17% (protective or non-protective ants) of nitrogen of plant tissues nearest the domatium came from domatia inhabitants. Therefore, interlopers such as earthworms and non-protective ants contributed positively to the nitrogen budget of localized plant modules of this understorey tree. N-15-enriched feeding experiments with protective ants demonstrated that nutrients flowed from domatia inhabitants to nearby plant modules. Fruit set did not differ between paired hand-pollinated inflorescences on domatia and non-domatia bearing branches. This was possibly due to the nutrient flux from domatia to adjacent branches without domatia within localized modules. 4. This study has demonstrated the nutritive role of non-protective ants and non-ant invertebrates, hitherto referred to as interlopers, in an unspecialized myrmecophyte. Our study suggests that even before the establishment of a specialized ant-plant protection mutualism, nutritional benefits conferred by domatia inhabitants can explain the fitness benefits of bearing domatia, and thus the maintenance of a trait that facilitates the establishment of a specialized ant-plant symbiosis.
Resumo:
The otoliths (N = 12) of freshwater invasive species tilapia (Tilapia mossambicus) collected from two water bodies located at Kolkata and Bangalore, India, were analyzed for stable isotopes (delta 18O, delta 14C) and major and trace elements in order to assess the suitability of using otoliths as a tracer of aquatic environmental changes. The stable isotope analysis was done using the dual inlet system of a Finnigan-MAT 253 isotope ratio mass spectrometer (Thermo-Fisher, Bremen, Germany). Concentrations of major and trace elements were determined using a Thermo X-Series II quadrupole mass spectrometer. The stable isotope composition in tilapia otolith samples from Bangalore and Kolkata water bodies are quite good agreeing with that of the respective lake/pond and rain water. Elemental composition revealed in a pattern of Ca > Fe > Na > Sr > K > Ba > Cr > Mg > As > Mn > Zn > Co > Cu > Cd > Pb. The otoliths from Kolkata pond water are more enriched in Ba, Zn, Pb, Mn, Se, Cu, Zn, Cd, and Ni whereas Cr and As were found to be higher in otolith samples from Bangalore lake. The enrichment factor (EF) values of Cr were higher for both the sampling location in comparison with other metals, although all the studied metals exhibited EF values >1. The PCA shows clustering of metals in the otolith which are related either with the metabolic and physiological attributes or waterborne source. The study demonstrated the potential of stable isotope techniques to distinguish otolith specimens from varied climatic zone, while elemental composition recorded the quality of water at both the locations. The role of climate driving the quality of water can be understood by detailed and continuous monitoring of otolith specimens in the future. Future method allows reconstruction of climate and water quality from old specimens from field exposures or museum collection.