11 resultados para branchial arch
em Indian Institute of Science - Bangalore - Índia
Resumo:
The safety of an in-service brick arch railway bridge is assessed through field testing and finite-element analysis. Different loading test train configurations have been used in the field testing. The response of the bridge in terms of displacements, strains, and accelerations is measured under the ambient and design train traffic loading conditions. Nonlinear fracture mechanics-based finite-element analyses are performed to assess the margin of safety. A parametric study is done to study the effects of tensile strength on the progress of cracking in the arch. Furthermore, a stability analysis to assess collapse of the arch caused by lateral movement at the springing of one of the abutments that is elastically supported is carried out. The margin of safety with respect to cracking and stability failure is computed. Conclusions are drawn with some remarks on the state of the bridge within the framework of the information available and inferred information. DOI: 10.1061/(ASCE)BE.1943-5592.0000338. (C) 2013 American Society of Civil Engineers.
Resumo:
Peroxidative bromination of phenol red to its tetrabromo derivative, bromophenol blue, required vanadate in addition to H2O2 when carried out in the pH range of 5-7. Excess H2O2, with ratio of H2O2:vanadate of 2:1 and above, prevented the reaction. Diperoxovanadate, known to be formed in such reaction mixtures, was ineffective by itself and needed uncomplexed vanadate (V-v) or vanadyl (V-iv) to support bromination. Bromide-assisted reduction of the excess vanadate to vanadyl appeared to be an essential secondary reaction. In the absence of phenol red oxygen was released, and concomitantly bromide was oxidized to a form competent to brominate phenol red added after termination of oxygen release. These findings indicated participation of reactions leading to an intermediate derived from vanadyl and diperoxovanadate, previously described from this laboratory (Arch. Biochem. Biophys. 316, 319-326, 1995). Continuous bromination of phenol red occurred when glucose oxidase-glucose system was used as a source of continuous flow of H2O2. A scheme of reactions involving peroxovanadates (mono-, di-, mu-, and bromo-) is proposed for the formation and utilization of an active brominating species and for the recycling of the product, mono-peroxovanadate, by H2O2, which explains the catalytic role of vanadium in the bromoperoxidation reaction.
Resumo:
In contrast to a published report [Wali et al. Arch Microbiol 118:49–53 (1978)], an organic acid is not essential for the growth of thermophilic fungi. The thermophilic fungus, Thermomyces lanuginosus, grows satisfactorily in a synthetic medium containing glucose as carbon source if the pH of the medium is controlled. The control of pH is essential for the concentration of carbon dioxide in the growth medium and the activity of anaplerotic enzyme, pyruvate carboxylase.
Resumo:
Acyl carrier protein (ACP) plays a central role in fatty acid biosynthesis. However, the molecular machinery that mediates its function is not yet fully understood. Therefore, structural studies were carried out on the acyl-ACP intermediates of Plasmodium falciparum using NMR as a spectroscopic probe. Chemical shift perturbation studies put forth a new picture of the interaction of ACP molecule with the acyl chain, namely, the hydrophobic core can protect up to 12 carbon units, and additional carbons protrude out from the top of the hydrophobic cavity. The latter hypothesis stems from chemical shift changes observed in C-alpha and C-beta of Ser-37 in tetradecanoyl-ACP. C-13, N-15-Double-filtered nuclear Overhauser effect (NOE) spectroscopy experiments further substantiate the concept; in octanoyl (C-8)- and dodecanoyl (C-12)-ACP, a long range NOE is observed within the phosphopantetheine arm, suggesting an arch-like conformation. This NOE is nearly invisible in tetradecanoyl (C-14)-ACP, indicating a change in conformation of the prosthetic group. Furthermore, the present study provides insights into the molecular mechanism of ACP expansion, as revealed from a unique side chain-to-backbone hydrogen bond between two fairly conserved residues, Ile-55 HN and Glu-48 O. The backbone amide of Ile-55 HN reports a pK(a) value for the carboxylate, similar to 1.9 pH units higher than model compound value, suggesting strong electrostatic repulsion between helix II and helix III. Charge-charge repulsion between the helices in combination with thrust from inside due to acyl chain would energetically favor the separation of the two helices. Helix III has fewer structural restraints and, hence, undergoes major conformational change without altering the overall-fold of P. falciparum ACP.
Resumo:
Acyl carrier protein (ACP) plays a central role in fatty acid biosynthesis. However, the molecular machinery that mediates its function is not yet fully understood. Therefore, structural studies were carried out on the acyl-ACP intermediates of Plasmodium falciparum using NMR as a spectroscopic probe. Chemical shift perturbation studies put forth a new picture of the interaction of ACP molecule with the acyl chain, namely, the hydrophobic core can protect up to 12 carbon units, and additional carbons protrude out from the top of the hydrophobic cavity. The latter hypothesis stems from chemical shift changes observed in C-alpha and C-beta of Ser-37 in tetradecanoyl-ACP. C-13, N-15-Double-filtered nuclear Overhauser effect (NOE) spectroscopy experiments further substantiate the concept; in octanoyl (C-8)- and dodecanoyl (C-12)-ACP, a long range NOE is observed within the phosphopantetheine arm, suggesting an arch-like conformation. This NOE is nearly invisible in tetradecanoyl (C-14)-ACP, indicating a change in conformation of the prosthetic group. Furthermore, the present study provides insights into the molecular mechanism of ACP expansion, as revealed from a unique side chain-to-backbone hydrogen bond between two fairly conserved residues, Ile-55 HN and Glu-48 O. The backbone amide of Ile-55 HN reports a pK(a) value for the carboxylate, similar to 1.9 pH units higher than model compound value, suggesting strong electrostatic repulsion between helix II and helix III. Charge-charge repulsion between the helices in combination with thrust from inside due to acyl chain would energetically favor the separation of the two helices. Helix III has fewer structural restraints and, hence, undergoes major conformational change without altering the overall-fold of P. falciparum ACP.
Serotypic and genotypic characterization of human serotype 10 rotaviruses from asymptomatic neonates
Resumo:
Human rotaviruses were isolated from asymptomatic neonates at various hospitals and clinics in the city of Bangalore, India, and were found to be subgroup I specific and possess long RNA patterns (M. Sukumaran, K. Gowda, P. P. Maiya, T. P. Srinivas, M. S. Kumar, S. Aijaz, R. R. Reddy, L. Padilla, H. B. Greenberg, and C. D. Rao, Arch. Virol. 126:239-251, 1992). Three of these strains were adapted to tissue culture and found by serotype analysis and neutralization assays to be of serotype 10, a serotype commonly found in cattle but infrequently found in humans and not previously identified in neonates. By RNA-RNA hybridization, a high level of relatedness to a serotype 10 bovine rotavirus strain and a low-to-medium level of relatedness to a human rotavirus strain were observed. Since this human isolate shares a genogroup with bovine rotavirus, it is likely that it originated by interspecies transmission. A human rotavirus strain isolated from asymptomatic neonates and similar to bovine rotavirus might represent a good vaccine candidate.
Resumo:
Previous work has shown that irrespective of the route of exposure methyl isocyanate (MIC) caused acute lactic acidosis in rats (Jeevaratnam et al., Arch. Environ. Contam. Toxicol. 19, 314�319, 1990) and the hypoxia was of stagnant type due to tissue hypoperfusion resulting from hypovolemic hypotension in rabbits administered MIC subcutaneously (Jeevarathinam et al., Toxicology 51, 223�240, 1988). The present study was designed to investigate whether MIC could induce histotoxic hypoxia through its effects on mitochondrial respiration. Male Wistar rats were used for liver mitochondrial and submitochondrial particle (SMP) preparation. Addition of MIC to tightly coupled mitochondria in vitro resulted in stimulation of state 4 respiration, abolition of respiratory control, decrease in ADP/O ratio, and inhibition of state 3 oxidation. The oxidation of NAD+-linked substrates (glutamate + malate) was more sensitive (fiveto sixfold) to the inhibitory action of MIC than succinate while cytochrome oxidase remained unaffected. MIC induced twofold delay in the onset of anerobiosis, and cytochrome b reduction in SMP with NADH in vitro confirms inhibition of electron transport at complex I region. MIC also stimulated the ATPase activity in tightly coupled mitochondria while lipid peroxidation remained unaffected. As its hydrolysis products, methylamine and N,N?-dimethylurea failed to elicit any change in vitro; these effects reveal that MIC per se acts as an inhibitor of electron transport and a weak uncoupler. Administration of MIC sc at lethal dose caused a similar change only with NAD+-linked substrates, reflecting impairment of mitochondrial respiration at complex I region and thereby induction of histotoxic hypoxia in vivo.
Resumo:
In our work we have used the atomic hydrogen [HΙ] gas distribution in the HΙ 21-cm line emission to study the dark matter halo perturbations. For tHΙs analysis, the 2-D HΙ surface density and velocity maps (arcHΙval) of the galaxies in the Eridanus group (obtained using the GMRT) and in the Ursa Major group (obtained from WSRT) were used. In addition a few HΙckson Compact Groups of galaxies were also studied using the GMRT. The HΙ maps of these galaxies were Fourier analysed to estimate the asymmetry in the distribution and motion of gas. The average asymmetry parameter in the 1.5 to 2.5 K′-band scale lengths was found to be ~ 0.27 for the Eridanus group of galaxies wHΙle it was ~ 0.14 for the Ursa Major group of galaxies. The asymmetries in the distribution of HΙ as a function of Hubble type of galaxies were also studied and was found to be directly correlated with the compactness of the groups. In addition, the trend in the asymmetry as a function of the Hubble type of galaxies was opposite to that seen in the field galaxies, i.e., in the group galaxies, the early type galaxies showed more asymmetry than late type. These two aspects indicated that tidal interactions between the galaxies in a group environment to be the major cause of asymmetries. The observed asymmetry parameters were consistent with recent numerical simulations of asymmetries of gas disk caused by fly-by interactions. We have also estimated the perturbation of dark matter halo using the asymmetry parameter obtained from the Fourier series analysis of the surface density maps.
Resumo:
Relation between X-ray scattering intensities, mean square thermal fluctuations and thermodynamic properties. High temperature X-ray diffraction study of liquid Fe-Ni and Fe-Si alloys using reflection and transmission geometries. Calculation of the structure factor as a function of wave vector. Extrapolation to zero wave vector. Calculation of the concentration-concentration correlation function defined by A. B. Bhatia and D. E. Thorton. Computation of thermodynamic quantities of mixing A G, LlH and LlS for the binary alloys. Comparison with direct thermodynamic measurements reported in the literature.
Resumo:
The dopamine monoxygenase N-terminal (DOMON) domain is found in extracellular proteins across several eukaryotic and prokaryotic taxa. It has been proposed that this domain binds to heme or sugar moieties. Here, we have analyzed the role of four highly conserved amino acids in the DOMON domain of the Drosophila melanogaster Knickkopf protein that is inserted into the apical plasma membrane and assists extracellular chitin organization. In principal, we generated Knickkopf versions with exchanged residues tryptophan(299,) methionine(333), arginine(401), or histidine(437), and scored for the ability of the respective engineered protein to normalize the knickkopf mutant phenotype. Our results confirm the absolute necessity of tryptophan(299,) methionine(333), and histidine(437) for Knickkopf function and stability, the latter two being predicted to be critical for heme binding. In contrast, arginine(401) is required for full efficiency of Knickkopf activity. Taken together, our genetic data support the prediction of these residues to mediate the function of Knickkopf during cuticle differentiation in insects. Hence, the DOMON domain is apparently an essential factor contributing to the construction of polysaccharide-based extracellular matrices.
Resumo:
Edge cracked specimens have been widely utilized for fracture testing. Edge cracked semicircular disk (ECSD) specimen has now been well characterized with regard to its form factor and weight function. This paper presents a modified semicircular ring version of this specimen to enhance the form factor in general while retaining other desirable features. The efficacy of the modified design is proved by combining theory of elasticity solutions with finite element results to arrive at the optimum design geometry. New insights emerging from this work are used to theoretically re-examine the arch-tension and the four-point bend specimens. (C) 2014 Elsevier Ltd. All rights reserved.