52 resultados para bone repair

em Indian Institute of Science - Bangalore - Índia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to investigate the possibility to construct tissue-engineered bone repair scaffolds with pore size distributions using rapid prototyping techniques. Design/methodology/approach - The fabrication of porous scaffolds with complex porous architectures represents a major challenge in tissue engineering and the design aspects to mimic complex pore shape as well as spatial distribution of pore sizes of natural hard tissue remain unexplored. In this context, this work aims to evaluate the three-dimensional printing process to study its potential for scaffold fabrication as well as some innovative design of homogeneously porous or gradient porous scaffolds is described and such design has wider implication in the field of bone tissue engineering. Findings - The present work discusses biomedically relevant various design strategies with spatial/radial gradient in pore sizes as well as with different pore sizes and with different pore geometries. Originality/value - One of the important implications of the proposed novel design scheme would be the development of porous bioactive/biodegradable composites with gradient pore size, porosity, composition and with spatially distributed biochemical stimuli so that stem cells loaded into scaffolds would develop into complex tissues such as those at the bone-cartilage interface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tissue engineering deals with the regeneration of tissues for bone repair, wound healing, drug delivery, etc., and a highly porous 3D artificial scaffold is required to accommodate the cells and direct their growth. We prepared 3D porous calcium phosphate ((hydroxyapatite/beta-tricalcium phosphate)/agarose, (HAp/beta-TCP)/agarose) composite scaffolds by sol-gel technique with water (WBS) and ethanol (EBS) as solvents. The crystalline phases of HAp and beta-TCP in the scaffolds were confirmed by X-ray diffraction (XRD) analysis. The EBS had reduced crystallinity and crystallite size compared to WBS. WBS and EBS revealed interconnected pores of 1 mu m and 100 nm, respectively. The swelling ratio was higher for EBS in water and phosphate buffered saline (PBS). An in vitro drug loading/release experiment was carried out on the scaffolds using gentamicin sulphate (GS) and amoxicillin (AMX). We observed initial burst release followed by sustained release from WBS and EBS. In addition, GS showed more extended release than AMX from both the scaffolds. GS and AMX loaded scaffolds showed greater efficacy against Pseudomonas than Bacillus species. WBS exhibited enhanced mechanical properties, wettability, drug loading and haemocompatibility compared to EBS. In vitro cell studies showed that over the scaffolds, MC3T3 cells attached and proliferated and there was a significant increase in live MC3T3 cells. Both scaffolds supported MC3T3 proliferation and mineralization in the absence of osteogenic differentiation supplements in media which proves the scaffolds are osteoconducive. Microporous scaffolds (WBS) could assist the bone in-growth, whereas the presence of nanopores (EBS) could enhance the degradation process. Hence, WBS and EBS could be used as scaffolds for tissue engineering and drug delivery. This is a cost effective technique to produce scaffolds of degradable 3D ceramic-polymer composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Managing sludge generated by treating groundwater contaminated with geogenic contaminants (fluoride, arsenic, and iron) is a major issue in developing nations. Their re-use in civil engineering applications is a possible pathway for reducing the impact on the geo-environment. This paper examines the re-use of one such sludge material, namely, fluoride contaminated bone char sludge, as partial replacement for fine aggregate (river-sand) in the manufacture of dense concrete specimens. Bone char sludge is being produced by defluoridation of contaminated groundwater in Nalagonda District, Andhra Pradesh, India. The impact of admixing 1.5-9% sludge contents on the compression strength and fluoride leaching potential of the sludge admixed concrete (SAC) specimens are examined. The compression strengths of the SAC specimensa re examined with respect to strength criteria for manufacture of dense, load-bearing concrete blocks. The fluoride release potential of the SAC specimens is examined with respect to standards specific to disposal of treated leachate into inland surface water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O6-Alkylguanine-DNA alkyltransferase (AGT) repairs O6-methylguanine (O6mG) in DNA that is known to cause Mutation and cancer. On the basis of Calculations performed using density functional theory involving the active site of AGT, a mechanism for catalytic demethylation of O6mG to guanine has been proposed. In this mechanism, roles of six amino acids, i.e., Cys145, His 146, Glu172, Tyr114, Lys165, and Ser159 in catalytic demethylation of O6mG are involved. This mechanism has three steps as follows. At the first step, Cys145 in the Cys145-water-His146-Glu172 tetrad is converted to cysteine thiolate anion while at the second step, abstraction of the Tyr114 proton by the N3 site of O6mG occurs in a barrierless manner. In the third step, abstraction of Lys165 proton by deprotonated Tyr114 and transfer of the methyl group of O6mG to the thiolate group of Cys145 anion Occur simultaneously. As AGT is a major target in cancer therapy, identification of the roles of the different amino acids in demethylation of O6mG is expected to be useful in designing efficient AGT inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis is a disease of low bone mass most often caused by an increase in bone resorption that is not sufficiently compensated for by a corresponding increase in bone formation(1). As gut-derived serotonin (GDS) inhibits bone formation(2), we asked whether hampering its biosynthesis could treat osteoporosis through an anabolic mechanism (that is, by increasing bone formation). We synthesized and used LP533401, a small molecule inhibitor of tryptophan hydroxylase-1 (Tph-1), the initial enzyme in GDS biosynthesis. Oral administration of this small molecule once daily for up to six weeks acts prophylactically or therapeutically, in a dose-dependent manner, to treat osteoporosis in ovariectomized rodents because of an isolated increase in bone formation. These results provide a proof of principle that inhibiting GDS biosynthesis could become a new anabolic treatment for osteoporosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesively-bonded composite patch repairs over cracked or corrosion-damaged metallic aircraft structures have shown great promise for extending life of ageing structures. This study presents the numerical investigation into the interface behaviour of adhesively-bonded cracked aluminum alloy substrate patched with fibre-reinforced composite material. The adhesive is modelled as an elasto-plastic bilinear material to characterise the debond behaviour, while the defective substrate is regarded as linear elastic continuum. Two typical patch shapes were selected based on information available in the literature. Geometric and material nonlinear analyses for square and octagonal patches were performed to capture peel and shear stresses developed between the substrate and the patch to examine the possibility of interface delamination/debonding. Parametric studies on adhesive thickness and patch thickness were carried out to predict their infuence on damage tolerance of repaired structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesively-bonded composite patch repairs over cracked or corrosion-damaged metallic aircraft structures have shown great promise for extending life of ageing structures. This study presents the numerical investigation into the interface behaviour of adhesively-bonded cracked aluminum alloy substrate patched with fibre-reinforced composite material. The adhesive is modelled as an elasto-plastic bilinear material to characterise the debond behaviour, while the defective substrate is regarded as linear elastic continuum. Two typical patch shapes were selected based on information available in the literature. Geometric and material nonlinear analyses for square and octagonal patches were performed to capture peel and shear stresses developed between the substrate and the patch to examine the possibility of interface delamination/debonding. Parametric studies on adhesive thickness and patch thickness were carried out to predict their infuence on damage tolerance of repaired structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat shock protein 90 participates in diverse biological processes ranging from protein folding, cell cycle, signal transduction and development to evolution in all eukaryotes. It is also critically involved in regulating growth of protozoa such as Dictyostelium discoideum, Leishmania donovani, Plasmodium falciparum, Trypanosoma cruzi, and Trypanosoma evansi. Selective inhibition of Hsp90 has also been explored as an intervention strategy against important human diseases such as cancer, malaria, or trypanosomiasis. Giardia lamblia, a simple protozoan parasite of humans and animals, is an important cause of diarrheal disease with significant morbidity and some mortality in tropical countries. Here we show that the G. lamblia cytosolic hsp90 ( glhsp90) is split in two similar sized fragments located 777 kb apart on the same scaffold. Intrigued by this unique arrangement, which appears to be specific for the Giardiinae, we have investigated the biosynthesis of GlHsp90. We used genome sequencing to confirm the split nature of the giardial hsp90. However, a specific antibody raised against the peptide detected a product with a mass of about 80 kDa, suggesting a post-transcriptional rescue of the genomic defect. We show evidence for the joining of the two independent Hsp90 transcripts in-trans to one long mature mRNA presumably by RNA splicing. The splicing junction carries hallmarks of classical cis-spliced introns, suggesting that the regular cis-splicing machinery may be sufficient for repair of the open reading frame. A complementary 26-nt sequence in the ``intron'' regions adjacent to the splice sites may assist in positioning the two pre-mRNAs for processing. This is the first example of post-transcriptional rescue of a split gene by trans-splicing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mismatches that arise during replication or genetic recombination or owing to damage to DNA by chemical agents are recognized by mismatch repair systems. The pathway has been characterized in detail in Escherichia coli. Several homologues of the genes encoding the proteins of this pathway have been identified in the yeast Saccharomyces cerevisiae and in human cells. Mutations in the human genes hMSH2, hMLH1, hPMS1 and hPMS2 have been linked to hereditary nonpolyposis colon cancer (HNPCC) and to some sporadic tumours. Mismatch repair also plays an antirecombinogenic role and is implicated in speciation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uracil excision repair is ubiquitous in all domains of life and initiated by uracil DNA glycosylases (UDGs) which excise the promutagenic base, uracil, from DNA to leave behind an abasic site (AP-site). Repair of the resulting AP-sites requires an AP-endonuclease, a DNA polymerase, and a DNA ligase whose combined activities result in either short-patch or long-patch repair. Mycobacterium tuberculosis, the causative agent of tuberculosis, has an increased risk of accumulating uracils because of its G + C-rich genome, and its niche inside host macrophages where it is exposed to reactive nitrogen and oxygen species, two major causes of cytosine deamination (to uracil) in DNA. In vitro assays to study DNA repair in this important human pathogen are limited. To study uracil excision repair in mycobacteria, we have established assay conditions using cell-free extracts of M. tuberculosis and M. smegmatis (a fast-growing mycobacterium) and oligomer or plasmid DNA substrates. We show that in mycobacteria, uracil excision repair is completed primarily via long-patch repair. In addition, we show that M. tuberculosis UdgB, a newly characterized family 5 UDG, substitutes for the highly conserved family 1 UDG, Ung, thereby suggesting that UdgB might function as backup enzyme for uracil excision repair in mycobacteria. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrity enhancement of damaged or design deficient structures through repairs is attracting considerable engineering attention. Bonded composite patch repairs to cracked metallic sheets offer various advantages over riveted doubler type, particularly for airframe applications. This paper first reviews the R&D activity in the area of structural repairs. It then approaches the problem of a composite patch repair to a cracked aluminium sheet with different finite element modelling strategies and compares their outcome. The efficient finite element modelling approach thus established is used to study the effect of patch material, patch size, patch symmetry and adhesive thickness on repair performance as the crack grows in the repair configuration. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A distributed storage setting is considered where a file of size B is to be stored across n storage nodes. A data collector should be able to reconstruct the entire data by downloading the symbols stored in any k nodes. When a node fails, it is replaced by a new node by downloading data from some of the existing nodes. The amount of download is termed as repair bandwidth. One way to implement such a system is to store one fragment of an (n, k) MDS code in each node, in which case the repair bandwidth is B. Since repair of a failed node consumes network bandwidth, codes reducing repair bandwidth are of great interest. Most of the recent work in this area focuses on reducing the repair bandwidth of a set of k nodes which store the data in uncoded form, while the reduction in the repair bandwidth of the remaining nodes is only marginal. In this paper, we present an explicit code which reduces the repair bandwidth for all the nodes to approximately B/2. To the best of our knowledge, this is the first explicit code which reduces the repair bandwidth of all the nodes for all feasible values of the system parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of minimizing the bandwidth required to repair a failed node when data is stored across n nodes in a distributed manner, so as to facilitate reconstruction of the entire data by connecting to any k out of the n nodes. We provide explicit and optimal constructions which permit exact replication of a failed systematic node.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methylated guanine damage at O6 position (i.e. O6MG) is dangerous due to its mutagenic and carcinogenic character that often gives rise to G:C-A:T mutation. However, the reason for this mutagenicity is not known precisely and has been a matter of controversy. Further, although it is known that O6-alkylguanine-DNA alkyltransferase (AGT) repairs O6MG paired with cytosine in DNA, the complete mechanism of target recognition and repair is not known completely. All these aspects of DNA damage and repair have been addressed here by employing high level density functional theory in gas phase and aqueous medium. It is found that the actual cause of O6MG mediated mutation may arise due to the fact that DNA polymerases incorporate thymine opposite to O6MG, misreading the resulting O6MG:T complex as an A:T base pair due to their analogous binding energies and structural alignments. It is further revealed that AGT mediated nucleotide flipping occurs in two successive steps. The intercalation of the finger residue Arg 128 into the DNA double helix and its interaction with the O6MG: C base pair followed by rotation of the O6MG nucleotide are found to be crucial for the damage recognition and nucleotide flipping.