2 resultados para bitter

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A galactose-specific lectin from the seeds of bitter gourd (Momordica charantia) is a four-chain type II ribosome-inactivating protein (RIP) resulting from covalent association through a disulfide bridge between two identical copies of a two-chain unit. The available structural information on such four-chain RIPs is meagre. The bitter gourd lectin was therefore crystallized for structural investigation and the crystals have been characterized. It is anticipated that the structure of the orthorhombic crystals will be analysed using molecular replacement by taking advantage of its sequence, and presumably structural, homology to normal two-chain type II RIPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of nine independent crystals of bitter gourd seed lectin (BGSL), a non-toxic homologue of type II RIPs, and its sugar complexes have been determined. The four-chain, two-fold symmetric, protein is made up of two identical two-chain modules, each consisting of a catalytic chain and a lectin chain, connected by a disulphide bridge. The lectin chain is made up of two domains. Each domain carries a carbohydrate binding site in type II RIPs of known structure. BGSL has a sugar binding site only on one domain, thus impairing its interaction at the cell surface. The adenine binding site in the catalytic chain is defective. Thus, defects in sugar binding as well as adenine binding appear to contribute to the non-toxicity of the lectin. The plasticity of the molecule is mainly caused by the presence of two possible well defined conformations of a surface loop in the lectin chain. One of them is chosen in the sugar complexes, in a case of conformational selection, as the chosen conformation facilitates an additional interaction with the sugar, involving an arginyl residue in the loop. The N-glycosylation of the lectin involves a plant-specific glycan while that in toxic type II RIPs of known structure involves a glycan which is animal as well as plant specific.