16 resultados para bargaining in the shadow of the law
em Indian Institute of Science - Bangalore - Índia
Resumo:
Kocks' formalism for analysing steady state deformation data for the case where Cottrell-Stokes law is valid is extended to incorporate possible back stresses from solution and/or precipitation hardening, and dependence of pre-exponential factor on the applied stress. A simple graphical procedure for exploiting these equations is demonstrated by analyzing tensile steady state data for a type 316 austentic stainless steel for the temperature range 1023 to 1223 K. In this instance, the computed back stress values turned out to be negative, a physically meaningless result. This shows that for SS 316, deformation in this temperature regime can not be interpreted in terms of a mechanism that obeys Cottrell-Stokes law.
Resumo:
As populations of the world's largest animal species decline, it is unclear how ecosystems will react to their local extirpation. Due to the unique ecological characteristics of megaherbivores such as elephants, seed dispersal is one ecosystem process that may be affected as populations of large animals are decimated. In typically disturbed South Asian ecosystems, domestic bovids (cattle, Bos primigenius, and buffalo, Bubalus bubalis) may often be the species most available to replace Asian elephants (Elephas maximus) as endozoochorous dispersers of large-fruited mammal-dispersed species. We use feeding trials, germination trials, and movement data from the tropical moist forests of Buxa Tiger Reserve (India) to examine whether domestic bovids are viable replacements for elephants in the dispersal of three largefruited species: Dillenia indica, Artocarpus chaplasha, and Careya arborea. We find that (1) once consumed, seeds are between 2.5 (C. arborea) and 26.5 (D. indica) times more likely to pass undigested into elephant dung than domestic bovid dung; and (2) seeds from elephant dung germinated as well as or better than seeds taken from bovid dung for all plant species, with D. indica seeds from elephant dung 1.5 times more likely to germinate. Furthermore, since wild elephants have less constrained movements than even free-roaming domestic bovids, we calculate that maximum dispersal by elephants is between 9.5 and 11.2 times farther than that of domestic bovids, with about 20% of elephant-dispersed seeds being moved farther than the maximum distance seeds are moved by bovids. Our findings suggest that, while bovids are able to disperse substantial numbers of seeds over moderate distances for two of the three study species, domestic bovids will be unable to routinely emulate the reliable, long-distance dispersal of seeds executed by elephants in this tropical moist forest. Thus while domestic bovids can attenuate the effects of losing elephants as dispersers, they may not be able to prevent the decline of various mammal-dispersed fruiting species in the face of overhunting, habitat fragmentation, and climate change.
Resumo:
We deal with a single conservation law with discontinuous convex-concave type fluxes which arise while considering sign changing flux coefficients. The main difficulty is that a weak solution may not exist as the Rankine-Hugoniot condition at the interface may not be satisfied for certain choice of the initial data. We develop the concept of generalized entropy solutions for such equations by replacing the Rankine-Hugoniot condition by a generalized Rankine-Hugoniot condition. The uniqueness of solutions is shown by proving that the generalized entropy solutions form a contractive semi-group in L-1. Existence follows by showing that a Godunov type finite difference scheme converges to the generalized entropy solution. The scheme is based on solutions of the associated Riemann problem and is neither consistent nor conservative. The analysis developed here enables to treat the cases of fluxes having at most one extrema in the domain of definition completely. Numerical results reporting the performance of the scheme are presented. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
We evaluate the commutator of the Gauss law constraints starting from the chirally gauged Wess-Zumino-Witten action. The calculations are done at tree level, i.e. by evaluating corresponding Poisson brackets. The results are compared with commutators obtained by others directly from the gauged fermionic theory, and with Faddeev's results based on cohomology.
Resumo:
We present a simplified theoretical formulation of the thermoelectric power (TP) under magnetic quantization in quantum wells (QWs) of nonlinear optical materials on the basis of a newly formulated magneto-dispersion law. We consider the anisotropies in the effective electron masses and the spin-orbit constants within the framework of k.p formalism by incorporating the influence of the crystal field splitting. The corresponding results for III-V materials form a special case of our generalized analysis under certain limiting conditions. The TP in QWs of Bismuth, II-VI, IV-VI and stressed materials has been studied by formulating appropriate electron magneto-dispersion laws. We also address the fact that the TP exhibits composite oscillations with a varying quantizing magnetic field in QWs of n-Cd3As2, n-CdGeAs2, n-InSb, p-CdS, stressed InSb, PbTe and Bismuth. This reflects the combined signatures of magnetic and spatial quantizations of the carriers in such structures. The TP also decreases with increasing electron statistics and under the condition of non-degeneracy, all the results as derived in this paper get transformed into the well-known classical equation of TP and thus confirming the compatibility test. We have also suggested an experimental method of determining the elastic constants in such systems with arbitrary carrier energy spectra from the known value of the TP. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We present results from numerical simulations using a ‘‘cell-dynamical system’’ to obtain solutions to the time-dependent Ginzburg-Landau equation for a scalar, two-dimensional (2D), (Φ2)2 model in the presence of a sinusoidal external magnetic field. Our results confirm a recent scaling law proposed by Rao, Krishnamurthy, and Pandit [Phys. Rev. B 42, 856 (1990)], and are also in excellent agreement with recent Monte Carlo simulations of hysteretic behavior of 2D Ising spins by Lo and Pelcovits [Phys. Rev. A 42, 7471 (1990)].
Resumo:
The nonequilibrium dynamic phase transition in the kinetic Ising model in the presence of an oscillating magnetic field is studied by Monte Carlo simulation. The fluctuation of the dynamic older parameter is studied as a function of temperature near the dynamic transition point. The temperature variation of appropriately defined ''susceptibility'' is also studied near the dynamic transition point. Similarly, the fluctuation of energy and appropriately defined ''specific heat'' is studied as a function of temperature near the dynamic transition point. In both cases, the fluctuations (of dynamic order parameter and energy) and the corresponding responses diverge (in power law fashion) near the dynamic transition point with similar critical behavior (with identical exponent values).
Resumo:
Recent studies on the Portevin-Le Chatelier effect report an intriguing crossover phenomenon from low-dimensional chaotic to an infinite-dimensional scale-invariant power law regime in experiments on CuAl single crystals and AlMg polycrystals, as function of strain rate. We devise fully dynamical model which reproduces these results. At low and medium strain rates, the model is chaotic with the structure of the attractor resembling the reconstructed experimental attractor. At high strain rates, power law statistics for the magnitudes and durations of the stress drops emerge as in experiments and concomitantly, the largest Lyapunov exponent is zero.
Resumo:
The dynamics of three liquid crystals, 4'(pentyloxy)-4-biphenylcarbonitrile (5-OCB), 4'-pentyl-4-biphenylcarbonitrile (5-CB), and 1-isothiocyanato-(4-propylcyclohexyl)benzene (3-CHBT), are investigated from very short time (similar to1 ps) to very long time (>100 ns) as a function of temperature using optical heterodyne detected optical Kerr effect experiments. For all three liquid crystals, the data decay exponentially only on the longest time scale (> several ns). The temperature dependence of the long time scale exponential decays is described well by the Landau-de Gennes theory of the randomization of pseudonematic domains that exist in the isotropic phase of liquid crystals near the isotropic to nematic phase transition. At short time, all three liquid crystals display power law decays. Over the full range of times, the data for all three liquid crystals are fit with a model function that contains a short time power law. The power law exponents for the three liquid crystals range between 0.63 and 0.76, and the power law exponents are temperature independent over a wide range of temperatures. Integration of the fitting function gives the empirical polarizability-polarizability (orientational) correlation function. A preliminary theoretical treatment of collective motions yields a correlation function that indicates that the data can decay as a power law at short times. The power law component of the decay reflects intradomain dynamics. (C) 2002 American Institute of Physics.
Resumo:
From electromotive force (emf) measurements using solid oxide galvanic cells incorporating ZrOz-CaO and ThOz-YO~.s electrolytes, the chemical potentials of oxygen over the systems Fe + FeCrzO 4 + Cr20 ~ and Fe + FeV204 + V203 were calculated. The values may be represented by the equations: 2Fe(s, I) + Oz(g) + 2Cr2Oa(s) -- 2FeCr204 (s)Akto2 = - 151,400 + 34.7T (• cal= -633,400 + 145.5T(• J (750 to 1536~ A~tO2 = -158,000 + 38.4T(• cal= -661,000 + 160.5T(*1250) J (1536 to 1700~2Fe (s, I) + O2 (g) + 2V203 (s) -- 2FeV204 (s) A/~Oz = - 138,000 + 29.8T(+300) cal= - 577,500 + 124.7T (• J (750 to 1536~A/IO2 = -144,600 + 33.45T(-300) cal = -605,100 + 140.0T(~-1250) J (1536 to 1700~At the oxygen potentials corresponding to Fe + FeCrzO a + Cr203 equilibria, the electronic contribution to the conductivity of ZrO2-CaO electrolyte was found to affect the measured emf. Application of a small 60 cycle A.C. voltage with an amplitude of 50 mv across the cell terminals reduced the time required to attain equilibrium at temperatures between 750 to 9500C by approximately a factor of two. The second law entropy of iron chromite obtained in this study is in good agreement with that calculated from thermal data. The entropies of formation of these spinel phases from the component oxides can be correlated to cation distribution and crystal field theory.
Resumo:
A review of the structural and thermodynamic information and phase equilibria in the Cu-Fe-O system suggested that a consistent, quantitative description of the system is hampered by lack of data on activities in the spinel solid solution CuFe2O4-Fe3O4. Therefore the activity of Fe3O4 in this solid solution is derived from measurements of the oxygen potentials established at 1000°C by mixtures containing Fe2O3 and spinel solid solutions of known composition. The oxygen pressures were measured manometrically for solid solutions rich in CuFe2O4, while for Fe3O4-rich compositions the oxygen potentials were obtained by an emf technique. The activities show significant negative deviations from Raoult’s law. The compositions of the spinel solid solutions in equilibrium with CuO + CuFeO2 and Cu + CuFeO2 were obtained from chemical analysis of the solid solution after magnetic separation. The oxygen potential of the three-phase mixture Cu + CuFeO2 + Fe3O4(spinel s.s.) was determined by a solid oxide galvanic cell. From these measurements a complete phase diagram and consistent thermodynamic data on the ternary condensed phases, CuFeO2 and CuFeO2O4, were obtained. An analysis of the free energy of mixing of the spinel solid solution furnished information on the distribution of cations and their valencies between the tetrahedral and octahedral sites of the spinel lattice, which is consistent with X-ray diffraction, magnetic and Seebeck coefficient measurements.
Resumo:
The fluctuating force model is developed and applied to the turbulent flow of a gas-particle suspension in a channel in the limit of high Stokes number, where the particle relaxation time is large compared to the fluid correlation time, and low particle Reynolds number where the Stokes drag law can be used to describe the interaction between the particles and fluid. In contrast to the Couette flow, the fluid velocity variances in the different directions in the channel are highly non-homogeneous, and they exhibit significant variation across the channel. First, we analyse the fluctuating particle velocity and acceleration distributions at different locations across the channel. The distributions are found to be non-Gaussian near the centre of the channel, and they exhibit significant skewness and flatness. However, acceleration distributions are closer to Gaussian at locations away from the channel centre, especially in regions where the variances of the fluid velocity fluctuations are at a maximum. The time correlations for the fluid velocity fluctuations and particle acceleration fluctuations are evaluated, and it is found that the time correlation of the particle acceleration fluctuations is close to the time correlations of the fluid velocity in a `moving Eulerian' reference, moving with the mean fluid velocity. The variances of the fluctuating force distributions in the Langevin simulations are determined from the time correlations of the fluid velocity fluctuations and the results are compared with direct numerical simulations. Quantitative agreement between the two simulations are obtained provided the particle viscous relaxation time is at least five times larger than the fluid integral time.
Resumo:
The temperature ranges of thermal and athermal deformation behaviour of nickel are identified by employing the temperature-dependence of flow-stress and strain-rate cycling data. The results are used to present a unified view of dislocation mechanisms of glide encompassing the two thermally activated and the intermediate athermal regimes of plastic flow.In the low-temperature thermally activated region (<250 K) the strain rate is found to be controlled by the repulsive intersection of glide and forest dislocations, in accordance with current ideas. The athermal stress in this region can be attributed mainly to the presence of strong attractive junctions which are overcome by means of Orowan bowing, a small contribution also coming from the elastic interactions between dislocations. The values of activation area and activation energy obtained in the high-temperature region (> 750 K) negate the operation of a diffusion-controlled mechanism. Instead, the data support a thermal activation model involving unzipping of the attractive junctions. The internal (long-range) stress contribution here results solely from the elastic interactions between dislocations. This view concerning the high-temperature plastic flow is further supported by the observation that the Cottrell–Stokes law is obeyed over large strains in the range 750–1200 K.
Resumo:
The magnetorotational instability (MRI) is a crucial mechanism of angular momentum transport in a variety of astrophysical accretion disks. In systems accreting at well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the plasma in the disk is essentially collisionless. We present a nonlinear study of the collisionless MRI using first-principles particle-in-cell plasma simulations. We focus on local two-dimensional (axisymmetric) simulations, deferring more realistic three-dimensional simulations to future work. For simulations with net vertical magnetic flux, the MRI continuously amplifies the magnetic field, B, until the Alfven velocity, v(A), is comparable to the speed of light, c (independent of the initial value of v(A)/c). This is consistent with the lack of saturation of MRI channel modes in analogous axisymmetric MHD simulations. The amplification of the magnetic field by the MRI generates a significant pressure anisotropy in the plasma (with the pressure perpendicular to B being larger than the parallel pressure). We find that this pressure anisotropy in turn excites mirror modes and that the volume-averaged pressure anisotropy remains near the threshold for mirror mode excitation. Particle energization is due to both reconnection and viscous heating associated with the pressure anisotropy. Reconnection produces a distinctive power-law component in the energy distribution function of the particles, indicating the likelihood of non-thermal ion and electron acceleration in collisionless accretion disks. This has important implications for interpreting the observed emission-from the radio to the gamma-rays-of systems such as Sgr A*.
Resumo:
We study the variations in the Cyclotron Resonant Scattering Feature (CRSF) during 2011 outburst of the high mass X-ray binary 4U 0115+63 using observations performed with Suzaku, RXTE, Swift and INTEGRAL satellites. The wide-band spectral data with low-energy coverage allowed us to characterize the broad-band continuum and detect the CRSFs. We find that the broad-band continuum is adequately described by a combination of a low temperature (kT similar to 0.8 keV) blackbody and a power law with high energy cutoff (E-cut similar to 5.4 keV) without the need for a broad Gaussian at similar to 10 keV as used in some earlier studies. Though winds from the companion can affect the emission from the neutron star at low energies (<3 keV), the blackbody component shows a significant presence in our continuum model. We report evidence for the possible presence of two independent sets of CRSFs with fundamentals at similar to 11 and similar to 15 keV. These two sets of CRSFs could arise from spatially distinct emitting regions. We also find evidence for variations in the line equivalent widths, with the 11 keV CRSF weakening and the 15 keV line strengthening with decreasing luminosity. Finally, we propose that the reason for the earlier observed anticorrelation of line energy with luminosity could be due to modelling of these two independent line sets (similar to 11 and similar to 15 keV) as a single CRSF.