9 resultados para bank credit
em Indian Institute of Science - Bangalore - Índia
Resumo:
New ventures are considered to be a major source of small firm growth. In Indian context the contribution of new ventures in terms of new employment, production and exports has largely remained unexplored. It is equally important and unexplored, the significance of the contribution of bank credit to the growth of new ventures in India. This paper is an attempt to throw light on these two aspects. The research is based on secondary data of the liberalized period provided by Ministry of Micro, Small and Medium Enterprises, Government of India and Reserve Bank of India. To analyze the influence of bank credit growth on new ventures and the influence of new ventures on growth of additional employment, additional production and additional exports, we used a Bi-Variate Vector Auto Regression. Based on the model generated, Granger causality tests are conducted to obtain the results. The study found that rate of growth of bank credit causes the number of new ventures, implying any increase in the rate of growth of bank credit will be beneficial to the growth of new ventures. The study also concluded that new ventures are not causing the growth of additional employment or additional production. However new ventures cause the growth of additional exports. This is reasonable as entrepreneurs start their new ventures with minimum possible employment and relatively low rate of capacity utilization and they come up to take advantage of the process of globalization by catering to the international market.
Resumo:
We consider an enhancement of the credit risk+ model to incorporate correlations between sectors. We model the sector default rates as linear combinations of a common set of independent variables that represent macro-economic variables or risk factors. We also derive the formula for exact VaR contributions at the obligor level.
Resumo:
We describe a novel method for human activity segmentation and interpretation in surveillance applications based on Gabor filter-bank features. A complex human activity is modeled as a sequence of elementary human actions like walking, running, jogging, boxing, hand-waving etc. Since human silhouette can be modeled by a set of rectangles, the elementary human actions can be modeled as a sequence of a set of rectangles with different orientations and scales. The activity segmentation is based on Gabor filter-bank features and normalized spectral clustering. The feature trajectories of an action category are learnt from training example videos using dynamic time warping. The combined segmentation and the recognition processes are very efficient as both the algorithms share the same framework and Gabor features computed for the former can be used for the later. We have also proposed a simple shadow detection technique to extract good silhouette which is necessary for good accuracy of an action recognition technique.
Resumo:
This paper describes a method of automated segmentation of speech assuming the signal is continuously time varying rather than the traditional short time stationary model. It has been shown that this representation gives comparable if not marginally better results than the other techniques for automated segmentation. A formulation of the 'Bach' (music semitonal) frequency scale filter-bank is proposed. A comparative study has been made of the performances using Mel, Bark and Bach scale filter banks considering this model. The preliminary results show up to 80 % matches within 20 ms of the manually segmented data, without any information of the content of the text and without any language dependence. 'Bach' filters are seen to marginally outperform the other filters.
Resumo:
Merton's model views equity as a call option on the asset of the firm. Thus the asset is partially observed through the equity. Then using nonlinear filtering an explicit expression for likelihood ratio for underlying parameters in terms of the nonlinear filter is obtained. As the evolution of the filter itself depends on the parameters in question, this does not permit direct maximum likelihood estimation, but does pave the way for the `Expectation-Maximization' method for estimating parameters. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
PDB Goodies is a web-based graphical user interface (GUI) to manipulate the Protein Data Bank file containing the three-dimensional atomic coordinates of protein structures. The program also allows users to save the manipulated three-dimensional atomic coordinate file on their local client system. These fragments are used in various stages of structure elucidation and analysis. This software is incorporated with all the three-dimensional protein structures available in the Protein Data Bank, which presently holds approximately 18 000 structures. In addition, this program works on a three-dimensional atomic coordinate file (Protein Data Bank format) uploaded from the client machine. The program is written using CGI/PERL scripts and is platform independent. The program PDB Goodies can be accessed over the World Wide Web at http:// 144.16.71.11/pdbgoodies/.
Resumo:
The financial crisis set off by the default of Lehman Brothers in 2008 leading to disastrous consequences for the global economy has focused attention on regulation and pricing issues related to credit derivatives. Credit risk refers to the potential losses that can arise due to the changes in the credit quality of financial instruments. These changes could be due to changes in the ratings, market price (spread) or default on contractual obligations. Credit derivatives are financial instruments designed to mitigate the adverse impact that may arise due to credit risks. However, they also allow the investors to take up purely speculative positions. In this article we provide a succinct introduction to the notions of credit risk, the credit derivatives market and describe some of the important credit derivative products. There are two approaches to pricing credit derivatives, namely the structural and the reduced form or intensity-based models. A crucial aspect of the modelling that we touch upon briefly in this article is the problem of calibration of these models. We hope to convey through this article the challenges that are inherent in credit risk modelling, the elegant mathematics and concepts that underlie some of the models and the importance of understanding the limitations of the models.
Resumo:
We propose a new method for design of computationally efficient nonsubsampled multiscale multidirectional filter bank with perfect reconstruction (PR). This filter bank is composed of two nonsubsampled filter banks, for multiscale decomposition and for directional expansion. For multiscale decomposition, we transform the 1-D equivalent subband filters directly into 2-D equivalent subband filters. The computational cost is considerably reduced by avoiding the computation of 2-D convolutions. The multidirectional decomposition utilizes fan filters. A new method for design of 2-D zero phase FIR fan filter transformation function is developed. This method also aids the transformation of a 1-D filter bank to a 2-D multidirectional filter bank. The potential application of the proposed filter bank is illustrated by comparing the image denoising performance of the proposed filter bank with other design method that exist in available literature.
Resumo:
A nonlinear stochastic filtering scheme based on a Gaussian sum representation of the filtering density and an annealing-type iterative update, which is additive and uses an artificial diffusion parameter, is proposed. The additive nature of the update relieves the problem of weight collapse often encountered with filters employing weighted particle based empirical approximation to the filtering density. The proposed Monte Carlo filter bank conforms in structure to the parent nonlinear filtering (Kushner-Stratonovich) equation and possesses excellent mixing properties enabling adequate exploration of the phase space of the state vector. The performance of the filter bank, presently assessed against a few carefully chosen numerical examples, provide ample evidence of its remarkable performance in terms of filter convergence and estimation accuracy vis-a-vis most other competing filters especially in higher dimensional dynamic system identification problems including cases that may demand estimating relatively minor variations in the parameter values from their reference states. (C) 2014 Elsevier Ltd. All rights reserved.