32 resultados para atmospheric-pressure photoionization
em Indian Institute of Science - Bangalore - Índia
Resumo:
Gas discharge plasmas used for thinfilm deposition by plasma-enhanced chemical vapor deposition (PECVD) must be devoid of contaminants, like dust or active species which disturb the intended chemical reaction. In atmospheric pressure plasma systems employing an inert gas, the main source of such contamination is the residual air inside the system. To enable the construction of an atmospheric pressure plasma (APP) system with minimal contamination, we have carried out fluid dynamic simulation of the APP chamber into which an inert gas is injected at different mass flow rates. On the basis of the simulation results, we have designed and built a simple, scaled APP system, which is capable of holding a 100 mm substrate wafer, so that the presence of air (contamination) in the APP chamber is minimized with as low a flow rate of argon as possible. This is examined systematically by examining optical emission from the plasma as a function of inert gas flow rate. It is found that optical emission from the plasma shows the presence of atmospheric air, if the inlet argon flow rate is lowered below 300 sccm. That there is minimal contamination of the APP reactor built here, was verified by conducting an atmospheric pressure PECVD process under acetylene flow, combined with argon flow at 100 sccm and 500 sccm. The deposition of a polymer coating is confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy shows that the polymer coating contains only 5% of oxygen, which is comparable to the oxygen content in polymer deposits obtained in low-pressure PECVD systems. (C) 2015 AIP Publishing LLC.
Resumo:
Indium sulphide (INS) is a III-VI compound semiconductor and crystallizes in the orthorhombic structure with a space group D~(Pmnn). The lattice parameters at room temperature and atmospheric pressure are: a = 3.944 A, b = 4.447 A and c= 10.648#, [1, 2]. The crystal structure comprises an ethane-like SalnlnS3 atomic arrangement;the SalnInS3 groups are mutually linked by sharing S corners and form a three-dimensional network.
Resumo:
Electrical resistivity of bulk amorphous Al23T77 samples has been studied as a function of pressure (up to 80 kbar) and temperature (down to 77 K). At atmospheric pressure the temperature dependence of resistivity obeys the relation = π0 exp(δE/RT) with two activation energies. In the temperature range 300 K T > 234 K the activation energy is 0.58 eV and for 234 >T 185 K the value is δE = 0.30 ev. The activation energy has been measured as a function of pressure. The electrical resistivity decreases exponentially with the increase of pressure and at 70 kbar pressure the electrical behaviour of the sample shows a metallic nature with a positive temperature coefficient. The high pressure phase of the sample is found to be a crystalline hexagonal phase.
Resumo:
Purity of the glow-discharge plasma at atmospheric pressure for surface modification applications is always debatable, since it works at ambient atmosphere. We have demonstrated on the use of optical emission spectroscopy to test the purity of this kind of plasma. The effect of gas flow pattern, nature of gas, and its flow rate on the plasma chemistry was studied. The importance of proper system design in maintaining a uniform flow of heavy and inert gases as carrier gas in atmospheric glow-discharge plasma was confirmed. The surface of a plasma-treated PET sample was analyzed using X-ray photoelectron spectroscopy to verify the studies on plasma purity done using emission spectrum.
Resumo:
The temperature and pressure dependence of Cl-35 NQR frequency and spin lattice relaxation time (T-1) were investigated in 2,3-dichloroanisole. Two NQR signals were observed throughout the temperature and pressure range studied. T-1 were measured in the temperature range from 77 to 300 K and from atmospheric pressure to 5 kbar. Relaxation was found to be due to the torsional motion of the molecule and also reorientation f motion of the CH3 group. T-1 versus temperature data were analyzed on the basis of Woessner and Gutowsky model, and the activation energy for the reorientation of the CH3 group was estimated. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities were also obtained. NQR frequency shows a nonlinear behavior with pressure, indicating both dynamic and static effects of pressure. The pressure coefficients were observed to be positive for both the lines. A thermodynamic analysis of the data was carried out to determine the constant volume temperature coefficients of the NQR frequency. The variation of spin lattice time with pressure was very small, showing that the relaxation is mainly due to the torsional motions of the molecules. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Wide-line c.w. proton resonance investigations have been carried out on the ammonium halides, namely, ammonium chloride, ammonium bromide and ammonium iodide in the temperature range between 77 and 300 K and in the pressure range between 1 bar and 14 kbar. It has been found that the narrow iodide spectrum at 77 K broadens under the application of hydrostatic pressure. The barrier height for the ammonium ion motion in ammonium iodide under pressure has been estimated by carrying out a temperature variation study. The rotational potential for the motion of ammonium ion in ammonium iodide at 1 bar and 14 kbar has been calculated using earlier theoretical models and compared with values calculated for ammonium chloride and bromide. The barrier height in the case of ammonium iodide under pressure is found to be of the same order of magnitude as the value obtained in the case of ammonium bromide at atmospheric pressure indicating that the high pressure phase of ammonium iodide is likely to have the same structure as the low temperature ordered CsCl phase found in the case of the chloride and the bromide. The increase in the potential barrier height in the case of ammonium iodide under pressure indicates that the reorientational motion executed by the ammonium ions is inhibited by the application of pressure. This is also confirmed by the broadening of the spectral line at 77 K under the application of pressure.
Resumo:
Surface flashover characteristics of solid spacers in a rod-plane configuration have been investigated in SF6, at pressures to 400 kPa, for switching impulse voltages to determine the effect of spacer, spacer materials and polarity of applied impulses. The effect of spacer material on the flashover voltage is not significant. For negative polarity impulses, the influence of the spacer is also insignificant. But for positive polarity impulses, at pressures < 200 kPa, the spacer efficiency becomes > 1.0. On the other hand, at pressures > 200 kPa, the presence of spacer drastically reduces the flashover voltage of the system. At about atmospheric pressure also, the spacer efficiency in air has been found to be > 1.0, with the same electrode geometry.
Resumo:
We present optical studies of both singlet and triplet states of a ladder-type conjugated polymer as a function of hydrostatic pressure. The pressure coefficient of the triplet-triplet absorption is smaller compared to the pressure coefficient of the singlet excitation, highlighting the more localized nature of triplet excitons. The photoluminescence and phosphorescence energies red-shift at similar rates with increasing pressure, thus giving experimental evidence for the first time that the singlet-triplet splitting remains almost a constant under high pressure until 4GPa. The diffusion length of the triplet excitons decreases to a few hundred nm at high pressures, as compared with a few micrometers at atmospheric pressure. Copyright (C) EPLA, 2013
Resumo:
In the present work, the spray structure of diesel from a 200-mu m, single-hole solenoid injector is studied using microscopic imaging at injection pressures of 700, 1000 and 1400 bar for various gas pressures. A long-distance microscope with a high resolution camera is used for spray visualization with a direct imaging technique. This study shows that even at very high injection pressures, the spray structure in an ambient environment of atmospheric pressure reveals presence of entangled ligaments and non-spherical droplets during the injection period. With increase in the injection pressure, the ligaments tend to get smaller and spread radially. The spray structure studies are also conducted at high gas pressures in a specially designed high pressure chamber with optical access. The near nozzle spray structure at the end of the injection shows that the liquid jet breakup is improved with increase in gas density. The droplet size measurement is possible only late in the injection duration when the breakup appears to be complete and mostly spherical droplets are observed. Hence, droplet size measurements are performed after 1.3 ms from start of the injection pulse. Spatial and temporal variation in Sauter Mean `Diameter (SMD) is observed and reported for the case corresponding to an injection pressure of 700 bar. Overall, this study has highlighted the importance of verifying the extentof atomization and droplet shape even in dense sprays before using conventional dropsizing methods such as PDPA.
Resumo:
The potential of textured hydrophobic surfaces to provide substantial drag reduction has been attributed to the presence of air bubbles trapped on the surface cavities. In this paper, we present results on water flow past a textured hydrophobic surface, while systematically varying the absolute pressure close to the surface. Trapped air bubbles on the surface are directly visualized, along with simultaneous pressure drop measurements across the surface in a microchannel configuration. We find that varying the absolute pressure within the channel greatly influences the trapped air bubble behavior, causing a consequent effect on the pressure drop (drag). When the absolute pressure within the channel is maintained below atmospheric pressure, we find that the air bubbles grow in size, merge and eventually detach from the surface. This growth and subsequent merging of the air bubbles leads to a substantial increase in the pressure drop. On the other hand, a pressure above the atmospheric pressure within the channel leads to gradual shrinkage and eventual disappearance of trapped air bubbles. We find that in this case, air bubbles do cause reduction in the pressure drop with the minimum pressure drop (or maximum drag reduction) occurring when the bubbles are flush with the surface. These results show that the trapped air bubble dynamics and the pressure drop across a textured hydrophobic microchannel are very significantly dependent on the absolute pressure within the channel. The results obtained hold important implications toward achieving sustained drag reduction in microfluidic applications.
Resumo:
A comparison with the alkali halides suggests that all the ammonium halides should occur in the NaCl centre-of-mass structure. Experimentally, at room temperature and atmospheric pressure, only NH4I crystallizes in this structure, while NH4F is found in the ZnO structure, and NH4C1 and NH4Br occur in the CsCl structure. We show that a distributed charge on the NH4+ ion can explain these structures. Taking charges of + 0.2e on each of the five atoms in NH4+, as suggested by other studies, we have recomputed the Madelung energy in the cases of interest. A full ionic theory including electrostatic, van der Waals and repulsive interactions then explains the centre-of-mass structures of all the four ammonium halides. The thermal and pressure transitions are also explained reasonably well. The calculated phase diagram of NH4F compares well with experiment. Barring the poorly understood NH4F(II) phase, which is beyond the scope of this work, the other features are in qualitative agreement. In particular, the theory correctly predicts a pressure transition at room temperature from the ZnO structure directly to the CsCl structure without an intermediate NaCl phase. A feature of our approach is that we do not need to invoke hydrogen bonding in NH4F.
Resumo:
A comparison with the alkali halides suggests that all the ammonium halides should occur in the NaCl centre-of-mass structure. Experimentally, at room temperature and atmospheric pressure, only NH,1 crystallizes in this structure, while NH,F is found in the ZnO structure, and NH&I and NH,Br occur in the CsCl structure. We show that a distributed charge on the NH,+ ion can explain these structures. Taking charges of + 0.2e on each of the five atoms in NH,+, as suggested by other studies, we have recomputed the Madelung energy in the cases of interest. A full ionic theory including electrostatic, van der Waals and repulsive interactions then explains the centre-of-mass structures of all the four ammonium halides. The thermal and pressure transitions are also explained reasonably well. The calculated phase diagram of NH,F compares well with experiment. Barring the poorly understood NH,F(II) phase, which is beyond the scope of this work, the other features are in qualitative agreement. In particular, the theory correctly predicts a pressure transition at room temperature from the ZnO structure directly to the CsCl structure without an intermediate NaCl phase. A feature of our approach is that we do not need to invoke hydrogen bonding in NH,F.
Resumo:
Thiosulfate (S2O32−) and tetrathionate (S4O62−)are oxidized to sulfate by air at atmospheric pressure and 50–70°C in the presence of cuprous oxide (Cu2O) as catalyst. Sulfate is produced from S2O32− by series-parallel reaction paths involving S4O62− as an intermediate. The rate data obtained for air oxidation of S2O32− on Cu2O agree well with a pseudo-homogeneous first order kinetic scheme, yielding values of rate constants for series parallel reaction paths which have been used in modelling the catalyzed air oxidation of S2O32−. Air oxidation of S4O62− on Cu2O proceeds at a higher rate in the presence of S2O32− than in its absence. Cu2O is less active than Cu2S for the air oxidation of S2O32−, as shown by the rate constant values which for Cu2O catalyzed oxidation are an order of magnitude smaller than those for the Cu2S catalyzed oxidation.
Resumo:
STUDIES on potassium perchlorate/polystyrene (KP/PS) propellant systems have been carried out by using such techniques as thermogravimetry (TG), differential thermal analysis (DTA), and mass spectrometry (MS). It has been found that the thermal decomposition (TD) behavior of the KP/PS propellant is similar to that of the AP/PS propellant studied earlier.! It has also been observed that the TD of KP in the melt has a correlation with the burning rate (r) of KP/PS propellant at atmospheric pressure.