3 resultados para anticipation scientifique

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Paper deals with the analysis of liquid limit of soils, an inferential parameter of universal acceptance. It has been undertaken primarily to re-examine one-point methods of determination of liquid limit water contents. It has been shown by basic characteristics of soils and associated physico-chemical factors that critical shear strengths at liquid limit water contents arise out of force field equilibrium and are independent of soil type. This leads to the formation of a scientific base for liquid limit determination by one-point methods, which hitherto was formulated purely on statistical analysis of data. Available methods (Norman, 1959; Karlsson, 1961; Clayton & Jukes, 1978) of one-point liquid limit determination have been critically re-examined. A simple one-point cone penetrometer method of computing liquid limit has been suggested and compared with other methods. Experimental data of Sherwood & Ryley (1970) have been employed for comparison of different cone penetration methods. Results indicate that, apart from mere statistical considerations, one-point methods have a strong scientific base on the uniqueness of modified flow line irrespective of soil type. Normalized flow line is obtained by normalization of water contents by liquid limit values thereby nullifying the effects of surface areas and associated physico-chemical factors that are otherwise reflected in different responses at macrolevel.Cet article traite de l'analyse de la limite de liquidité des sols, paramètre déductif universellement accepté. Cette analyse a été entreprise en premier lieu pour ré-examiner les méthodes à un point destinées à la détermination de la teneur en eau à la limite de liquidité. Il a été démontré par les caractéristiques fondamentales de sols et par des facteurs physico-chimiques associés que les résistances critiques à la rupture au cisaillement pour des teneurs en eau à la limite de liquidité résultent de l'équilibre des champs de forces et sont indépendantes du type de sol concerné. On peut donc constituer une base scientifique pour la détermination de la limite de liquidité par des méthodes à un point lesquelles, jusqu'alors, n'avaient été formulées que sur la base d'une analyse statistique des données. Les méthodes dont on dispose (Norman, 1959; Karlsson, 1961; Clayton & Jukes, 1978) pour la détermination de la limite de liquidité à un point font l'objet d'un ré-examen critique. Une simple méthode d'analyse à un point à l'aide d'un pénétromètre à cône pour le calcul de la limite de liquidité a été suggérée et comparée à d'autres méthodes. Les données expérimentales de Sherwood & Ryley (1970) ont été utilisées en vue de comparer différentes méthodes de pénétration par cône. En plus de considérations d'ordre purement statistque, les résultats montrent que les méthodes de détermination à un point constituent une base scientifique solide en raison du caractère unique de la ligne de courant modifiée, quel que soit le type de sol La ligne de courant normalisée est obtenue par la normalisation de la teneur en eau en faisant appel à des valeurs de limite de liquidité pour, de cette manière, annuler les effets des surfaces et des facteurs physico-chimiques associés qui sans cela se manifesteraient dans les différentes réponses au niveau macro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A family of 4-hydroxybenzamide-dicarboxylic acid cocrystals has been designed and subsequently isolated and characterized. The design strategy follows from an understanding of synthon modularity in crystal structures of monocomponent crystals such as gamma-quinol, 4,4'-biphenol and 4-hydroxybenzoic acid. These monocomponent structures contain infinite O-H center dot center dot center dot O-H center dot center dot center dot O-H center dot center dot center dot cooperative synthons linked with molecular connectors such as phenyl and biphenyl, and supramolecular connectors such as the acid dimer in 4-hydroxybenzoic acid. The cocrystal design was influenced by the anticipation that dicarboxylic acids can form a supramolecular connector mediated by acid-amide synthons with 4-hydroxybenzamide, which can then form the phenol O-H center dot center dot center dot O-H center dot center dot center dot O-H center dot center dot center dot infinite synthon. Effectively, the acid-amide and phenol synthons are insulated. The short axis of such a structure will be around 5.12 angstrom and this is borne out in 2:1 cocrystals of 4-hydroxybenzamide with oxalic, succinic, fumaric, glutaric (two forms) and pimelic acids. Hydrated variations of this structure type are seen in the cocrystals obtained with adipic and sebacic acids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diffusion-a measure of dynamics, and entropy-a measure of disorder in the system are found to be intimately correlated in many systems, and the correlation is often strongly non-linear. We explore the origin of this complex dependence by studying diffusion of a point Brownian particle on a model potential energy surface characterized by ruggedness. If we assume that the ruggedness has a Gaussian distribution, then for this model, one can obtain the excess entropy exactly for any dimension. By using the expression for the mean first passage time, we present a statistical mechanical derivation of the well-known and well-tested scaling relation proposed by Rosenfeld between diffusion and excess entropy. In anticipation that Rosenfeld diffusion-entropy scaling (RDES) relation may continue to be valid in higher dimensions (where the mean first passage time approach is not available), we carry out an effective medium approximation (EMA) based analysis of the effective transition rate and hence of the effective diffusion coefficient. We show that the EMA expression can be used to derive the RDES scaling relation for any dimension higher than unity. However, RDES is shown to break down in the presence of spatial correlation among the energy landscape values. (C) 2015 AIP Publishing LLC.