174 resultados para anti-corrosion coatings
em Indian Institute of Science - Bangalore - Índia
Resumo:
A self assembled monolayer (SAM) of sodium oleate was generated on mild steel by the dip coating method. Formation of the SAM on mild steel was examined using Infrared Reflection Absorption Spectroscopy (IRRAS) and contact angle measurements. The chemical and anticorrosive properties of the SAM were analyzed using different techniques. IRRAS and water contact angle data revealed the crystallinity and chemical stability of the SAM modified mild steel. The electrochemical measurements showed that the mild steel with the sodium oleate derived SAM exhibited better corrosion resistance in saline water. The effect of temperature and pH on the SAM formation and its anti corrosion ability was explored.
Resumo:
We demonstrate a nanoparticle loading protocol to develop a transparent, multifunctional polyelectrolyte multilayer film for externally activated drug and protein delivery. The composite film was designed by alternate adsorption of poly(allylamine hydrochloride) (PAH) and dextran sulfate (DS) on a glass substrate followed by nanoparticle synthesis through a polyol reduction method. The films showed a uniform distribution of spherical silver nanoparticles with an average diameter of 50 +/- 20 nm, which increased to 80 +/- 20 nm when the AgNO3 concentration was increased from 25 to 50 mM. The porous and supramolecular structure of the polyelectrolyte multilayer film was used to immobilize ciprofloxacin hydrochloride (CH) and bovine serum albumin (BSA) within the polymeric network of the film. When exposed to external triggers such as ultrasonication and laser light the loaded films were ruptured and released the loaded BSA and CH. The release of CH is faster than that of BSA due to a higher diffusion rate. Circular dichroism measurements confirmed that there was no significant change in the conformation of released BSA in comparison with native BSA. The fabricated films showed significant antibacterial activity against the bacterial pathogen Staphylococcus aureus. Applications envisioned for such drug-loaded films include drug and vaccine delivery through the transdermal route, antimicrobial or anti-inflammatory coatings on implants and drug-releasing coatings for stents. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Polyelectrolyte multilayer (PEM) thin film composed of weak polyelectrolytes was designed by layer-by-layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) for multi-drug delivery applications. Environmental stimuli such as pH and ionic strength showed significant influence in changing the film morphology from pore-free smooth structure to porous structure and favored triggered release of loaded molecules. The film was successfully loaded with bovine serum albumin (BSA) and ciprofloxacin hydrochloride (CH) by modulating the porous polymeric network of the film. Release studies showed that the amount of release could be easily controlled by changing the environmental conditions such as pH and ionic strength. Sustained release of loaded molecules was observed up to 8 h. The fabricated films were found to be biocompatible with epithelial cells during in-vitro cell culture studies. PEM film reported here not only has the potential to be used as self-responding thin film platform for transdermal drug delivery, but also has the potential for further development in antimicrobial or anti-inflammatory coatings on implants and drug-releasing coatings for stents. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Anti-corrosive and anti-bacterial properties of electrodeposited nanocrystalline Ni-Ag coatings are illustrated. Pure Ni, Ni-7 at.% Ag, & Ni-14 at.% Ag coatings were electrodeposited on Cu substrate. Coating consisted of Ni-rich and Ag-rich solid solution phases. With increase in the Ag content, the corrosion resistance of the Ni-Ag coating initially increased and then decreased. The initial increase was due to the Ni-Ag solid solution. The subsequent decrease was due to the increased galvanic coupling between the Ag-rich and Ni-rich phases. For all Ag contents, the corrosion resistance of the Ni-Ag coating was higher than the pure Ni coating. Exposure to Sulphate Reducing Bacteria (SRB) revealed that the extent of bio-fouling decreased with increase in the Ag content. After 2 month exposure to SRB, the Ni-Ag coatings demonstrated less loss in corrosion resistance (58% for Ni-7 at.% Ag and 20% for Ni-14 at.% Ag) when compared pure Ni coating (115%). (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
Anti-corrosive and anti-bacterial properties of electrodeposited nanocrystalline Ni-Ag coatings are illustrated. Pure Ni, Ni-7 at.% Ag, & Ni-14 at.% Ag coatings were electrodeposited on Cu substrate. Coating consisted of Ni-rich and Ag-rich solid solution phases. With increase in the Ag content, the corrosion resistance of the Ni-Ag coating initially increased and then decreased. The initial increase was due to the Ni-Ag solid solution. The subsequent decrease was due to the increased galvanic coupling between the Ag-rich and Ni-rich phases. For all Ag contents, the corrosion resistance of the Ni-Ag coating was higher than the pure Ni coating. Exposure to Sulphate Reducing Bacteria (SRB) revealed that the extent of bio-fouling decreased with increase in the Ag content. After 2 month exposure to SRB, the Ni-Ag coatings demonstrated less loss in corrosion resistance (58% for Ni-7 at.% Ag and 20% for Ni-14 at.% Ag) when compared pure Ni coating (115%). (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
In the present work, morphology, microstructure, and electrochemical behavior of Zn coatings containing non-toxic additives have been investigated. Zn coatings were electrodeposited over mild steel substrates using Zn sulphate baths containing four different organic additives: sodium gluconate, dextrose, dextrin, and saccharin. All these additives are ``green'' and can be derived from food contents. Morphological and structural characterization using electron microscopy, x-ray diffraction, and texture co-efficient analysis revealed an appreciable alteration in the morphology and texture of the deposit depending on the type of additive used in the Zn plating bath. All the Zn coatings, however, were nano-crystalline irrespective of the type of additive used. Polarization and electrochemical impedance spectroscopic analysis, used to investigate the effect of the change in microstructure and morphology on corrosion resistance behavior, illustrated an improved corrosion resistance for Zn deposits obtained from plating bath containing additives as compared to the pure Zn coatings.
Resumo:
Micro-arc oxidation (MAO) coatings were prepared on AZ31B magnesium alloy using alkaline silicate electrolyte at different current densities (0.026, 0.046 and 0.067 A/cm(2)). Field Emission Scanning Electron Microscopy (FESEM) analysis of the coating revealed an irregular porous structure with cracked morphology. Compositional analysis carried out for MAO coating showed the presence of almost an equal amount of Mg and 0 (34 wt.%) apart from other elements such as F, Si and AI. The cross-sectional FESEM images clearly portrayed that the MAO coating was dense along with the presence of very few fine pores. The surface roughness (R-a) of the coatings increased with an increase in the current density. Potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) studies were carried out for both the bare and MAO coated AZ31B Mg alloy in 3.5% NaCl solution. The corrosion potential (E-corr) and corrosion current density (i(corr)) values obtained for the bare substrate were -1.49 V and 46 mu A/cm(2), respectively. The coating prepared at 0.046 A/cm(2) exhibited the lowest i(corr) value of 7.79 x 10(-10) A/cm(2) and highest polarization resistance (41.6 M Omega cm(2)) attesting to the better corrosion resistance of the coating compared to other samples. EIS results also indicated almost similar corrosion behavior for the MAO coatings. Mott-Schottky analysis showed n-type and p-type semiconductor behavior for the oxide layer present on the bare magnesium alloy and MAO coatings respectively. (C) 2016 Published by Elsevier B.V.
Resumo:
Plasma electrolytic oxidation coatings were produced on AM50 Mg alloy in alkaline phosphate based electrolyte with montmorillonite clay additives employing current densities of 30, 60, and 120 mA/cm(2). The effect of current density on the microstructure and corrosion properties of the coating was investigated. The clay additives got melted and reactively incorporated into the coating forming an amorphous phase, at all the current densities. However, the coating was predominantly amorphous only at 30 mA/cm(2) and with increasing current density, increasing fractions of crystalline phases were formed. Higher current densities resulted in increased thickness of the coating, but reduced the compactness of the coatings. Electrochemical impedance spectroscopy tests in 0.5 wt.% (0.08 M) and 3.5 wt.% (0.6 M) NaCl solution revealed that the coatings processed at 30 mA/cm(2) exhibited a relatively better initial corrosion resistance owing to its relatively defect-free barrier layer and compactness of the coating. However, the presence of amorphous phases in significant amounts and lack of MgO in the coating resulted in increased rate of dissolution of the coatings and degradation of corrosion resistance. Coatings produced at higher current densities exhibited initial inferior corrosion resistance due to a more defective barrier layer and increased porosity in pore band and outer porous layer. However, the increased amount of crystalline phases and an increased amount of MgO, which resisted dissolution, counterbalanced the negative effects of defective barrier and increased porosity resulting in a relatively lower rate of the degradation of the corrosion resistance. Thus, the corrosion resistance of all the coatings continuously decreased with time and became similar after prolonged immersion in NaCl solution. Increasing current density, therefore, did not prove to be beneficial for the improvement of the corrosion performance of the PEO coatings. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
Graded alternate layers of Al2O3 and 8% Y2O3-ZrO2 and their admixtures were plasma sprayed onto bond-coated mild steel. They were evaluated for thermal-shock resistance, thermal-barrier characteristics, hot corrosion resistance (molten NaCl corrodant) and depth of attack, adhesion strength and the presence of phases. Although front-back temperature drops of 423-623 K were observed, some of the coatings showed good adherence even after 100 thermal shack cycles. In the sequence of the graded layers, the oxide which is directly in contact with the bond coat appears to influence the properties especially in coatings of 150 and 300 mu m thickness. Molten NaCl readily attacks the films at high hot-face temperatures (1273 K for 1 h) and the adhesive strength falls significantly by 50-60%. Diffusion of alkaline elements is also found to depend on the chemical composition of the outer coating directly facing the molten corrodant. (C) 1997 Elsevier Science Limited.
Resumo:
The present work is aimed at developing a bioactive, corrosion resistant and anti bacterial nanostructured silver substituted hydroxyapatite/titania (AgHA/TiO(2)) composite coating in a single step on commercially pure titanium (Cp Ti) by plasma electrolytic processing (PEP) technique. For this purpose 2.5 wt% silver substituted hydroxyapatite (AgHA) nanoparticles were prepared by microwave processing technique and were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM) methods. The as-synthesized AgHA particles with particle length ranging from 60 to 70 nm and width ranging from 15 to 20 nm were used for the subsequent development of coating on Cp Ti. The PEP treated Cp Ti showed both titania and AgHA in its coating and exhibited an improved corrosion resistance in 7.4 pH simulated body fluid (SBF) and 4.5 pH osteoclast bioresorbable conditions compared to untreated Cp Ti. The in vitro bioactivity test conducted under Kokubo SBF conditions indicated an enhanced apatite forming ability of PEP treated Cp Ti surface compared to that of the untreated Cp Ti. The Kirby-Bauer disc diffusion method or antibiotic sensitivity test conducted with the test organisms of Escherichia coli (E. coli) for 24 h showed a significant zone of inhibition for PEP treated Cp Ti compared to untreated Cp Ti. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Electroless Ni-Cu-P-ZRO(2) composite coating was successfully obtained on low carbon steel matrix by electroless plating technique. Coatings with different compositions were obtained by varying copper as ternary metal and nano sized zirconium oxide particles so as to obtain elevated corrosion resistant Ni-P coating. Microstructure, crystal structure and composition of deposits were analyzed by SEM, EDX and XRD techniques. The corrosion behavior of the deposits was studied by anodic polarization, Tafel plots and electrochemical impedance spectroscopy (EIS) in 3.5% sodium chloride solution. The ZRO(2) incorporated Ni-P coating showed higher corrosion resistance than plain Ni-P. The introduction of copper metal into Ni-P-ZRO(2) enhanced the protection ability against corrosion. The influence of copper metal and nanoparticles on microhardness of coatings was evaluated. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The Zn-CeO 2 composite coatings through electrodeposition technique were successfully fabricated on mild steel substrate. As a comparison pure zinc coating was also prepared. The concentration of CeO 2 nanoparticles was varied in the electrolytic bath and the composites were electrodeposited both in the presence and absence of cetyltriammonium bromide (CTAB). The performance of the CeO 2 nanoparticles towards the deposition, crystal structure, texture, surface morphology and electrochemical corrosion behavior was studied. For characterizations of the electrodeposits, the techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) were used. Both the additives ceria and surfactant polarize the reduction processes and thus influence the deposition process, surface nature and the electrochemical properties. The electrochemical experiments like potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) studies carried out in 3.5 wt. NaCl solution explicit higher corrosion resistance by CeO 2 incorporated coating in the presence of surfactant. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Halloysite nanotubes (HNTs) of the dimension 50nm x 1-3 mu m (diameter x length) are utililized to fabricate the alloy composite by employing electroless/autocatalytic deposition technique. Electroless Ni-P-HNT binary alloy composite coatings are prepared successfully on low carbon steel. These nanotubes were made to get inserted/incorporated into nickel matrix and corresponding composites are examined for their electrochemical, mechanical and tribological performances and compared with that of plain Ni-P. The coatings were characterized using scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDX) techniques to analyze surface nature and composition correspondingly. Small amount of incorporated HNTs made Ni-P deposits appreciable enhancement and betterment in corrosion resistance, hardness and friction resistance. This drastic improvement in the properties reflects the effect of addition of HNTs into Ni-P matrix leading to the development of high performance Ni-P-HNT composite coatings. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
Silver nanoparticles with an average size of 23 nm were chemically synthesized and used to fabricate Zn-Ag composite coatings. The Zn-Ag composite coatings were generated by electrodeposition method using a simple sulfate plating bath dispersed with 0.5, land 1.5 g/l of Ag nanoparticles. Scanning electron microscopy, X-ray diffraction and texture co-efficient calculations revealed that Ag nanoparticles appreciably influenced the morphology, micro-structure and texture of the deposit. It was also noticed that agglomerates of Ag nanopartides, in the case of high bath load conditions, produced defects and dislocations on the deposit surface. Ag nanoparticles altered the corrosion resistance property of Zn-Ag composite coatings as observed from Tafel polarization, electrochemical impedance analysis and an immersion test. Reduction in corrosion rate with increased charge transfer resistance was observed for Zn-Ag composite coatings when compared to a pure Zn coating. However, the particle concentration in the plating bath and their agglomeration state directly influenced the surface morphology and the subsequent corrosion behavior of the deposits. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Autocatalytic duplex Ni-P/Ni-W-P coatings were deposited on AZ31B magnesium alloy using stabilizer free nickel carbonate bath. Some of the coated specimens were passivated in chromate solution with and without heat treatment. Plain Ni-P coatings were also prepared for comparison. Coatings were characterized for their surface morphology, composition and corrosion resistance. Energy dispersive analysis of X-ray (EDX) showed that the phosphorous content in the Ni-P coating is 6 wt.% and for Ni-W-P it reduced to 3 wt.% due to the codeposition of tungsten in the Ni-P coating. Marginal increase in P and W contents was observed on passivated coupons along with Cr (0.18 wt.%) and O (2.8 wt.%) contents. Field emission scanning electron microscopy (FESEM) examination of these coating surfaces exhibited the nodular morphology. Chromate passivated surfaces showed the presence of uniformly distributed bright Ni particles along with nodules. Potenfiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies were carried out in deaerated 0.15 M NaCI solution to find out the corrosion resistance of the coatings. Among the coatings developed, duplex-heat treated-passivated (duplex-HIP) coatings showed lower corrosion current density (i(corr)) and higher polarization resistance (R-p) indicating the improved corrosion resistance. The charge transfer resistance (R-ct) value obtained for the duplex-HIP was about 170 times higher compared to that for Ni P coating. (c) 2013 Elsevier B.V. All rights reserved.