183 resultados para anisotropy

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic atoms at surfaces are a rich model system for solid-state magnetic bits exhibiting either classical(1,2) or quantum(3,4) behaviour. Individual atoms, however, are difficult to arrange in regular patterns(1-5). Moreover, their magnetic properties are dominated by interaction with the substrate, which, as in the case of Kondo systems, often leads to a decrease or quench of their local magnetic moment(6,7). Here, we show that the supramolecular assembly of Fe and 1,4-benzenedicarboxylic acid molecules on a Cu surface results in ordered arrays of high-spin mononuclear Fe centres on a 1.5nm square grid. Lateral coordination with the molecular ligands yields unsaturated yet stable coordination bonds, which enable chemical modification of the electronic and magnetic properties of the Fe atoms independently from the substrate. The easy magnetization direction of the Fe centres can be switched by oxygen adsorption, thus opening a way to control the magnetic anisotropy in supramolecular layers akin to that used in metallic thin films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method employing two liquid crystals of opposite diamagnetic anisotropies to determine chemical shift anisotropy without using any reference compound is described. It also provides individual values of the direct and the indirect spin-spin coupling constants between heteronuclei. The parameters for acetonitrile are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NMR studies of methyldichlorophosphine have been undertaken in the nematic phase of mixed liquid crystals of opposite diamagnetic anisotropies. The rα structure is derived. The proton chemical-shift anisotropy has been determined from the studies without the use of a reference compound and without a change of experimental conditions. It is shown that the molecule orients in the liquid crystal with positive diamagnetic anisotropy in such a way that the C3 symmetry axis of the CH3P moiety is preferentially aligned perpendicular to the direction of the magnetic field, unlike other similar systems. This is interpreted in terms of the formation of a weak solvent-solute molecular complex. The heteronuclear indirect spin-spin coupling constants are determined. The sign of the two-bond JPH is found to be positive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present here a theoretical approach to compute the molecular magnetic anisotropy parameters, D (M) and E (M) for single molecule magnets in any given spin eigenstate of exchange spin Hamiltonian. We first describe a hybrid constant M (S) valence bond (VB) technique of solving spin Hamiltonians employing full spatial and spin symmetry adaptation and we illustrate this technique by solving the exchange Hamiltonian of the Cu6Fe8 system. Treating the anisotropy Hamiltonian as perturbation, we compute the D (M)and E(M) values for various eigenstates of the exchange Hamiltonian. Since, the dipolar contribution to the magnetic anisotropy is negligibly small, we calculate the molecular anisotropy from the single-ion anisotropies of the metal centers. We have studied the variation of D (M) and E(M) by rotating the single-ion anisotropies in the case of Mn12Ac and Fe-8 SMMs in ground and few low-lying excited states of the exchange Hamiltonian. In both the systems, we find that the molecular anisotropy changes drastically when the single-ion anisotropies are rotated. While in Mn12Ac SMM D (M) values depend strongly on the spin of the eigenstate, it is almost independent of the spin of the eigenstate in Fe-8 SMM. We also find that the D (M)value is almost insensitive to the orientation of the anisotropy of the core Mn(IV) ions. The dependence of D (M) on the energy gap between the ground and the excited states in both the systems has also been studied by using different sets of exchange constants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dielectric properties of the homologous series of newly synthesized nonchiral compounds N-(4-n-alkyloxy-2-hydroxy-benzylidene)-4-carbethoxyaniline, (n = 6, 8, 10, 12) having wide temperature range (∼60°C) smectic A (SmA) phase, have been studied by the impedance spectroscopy in the frequency range of 100 Hz to 1 MHz. Measurements have been carried out for two principal alignments (planar as well as homeotropic) of the SmA phase. Dielectric anisotropy (Δε' = ε'∥ - ε'⊥) for all the members of the series has been found to be negative for the whole temperature range of SmA phase. Magnitude of the dielectric anisotropy (|Δε'|) has been found to decrease with the number of alkyl chains. Relaxation frequencies corresponding to the rotation of the individual molecules about their short axes, lie below 1 MHz and obey the Arrhenius law by which activation energies have been determined. However, the relaxation frequencies corresponding to the rotation of the molecules about their short axes apparently lie above 10 MHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stone-Wales (SW) defects, analogous to dislocations in crystals, play an important role in mechanical behavior of sp(2)-bonded carbon based materials. Here, we show using first-principles calculations that a marked anisotropy in the interaction among the SW defects has interesting consequences when such defects are present near the edges of a graphene nanoribbon: depending on their orientation with respect to edge, they result in compressive or tensile stress, and the former is responsible to depression or warping of the graphene nanoribbon. Such warping results in delocalization of electrons in the defect states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {(FeNbIV)-Nb-II} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb-IV, Mo-IV, W-IV.) X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H2O)Fe(L-1)}{M(CN)(8)}{Fe(L-1)}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L-1)}(2+) and {M(CN)(8)}(4-) units (L-1 stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L-1)) unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L-1)(H2O)(2)]Cl-2 a negative zero field splitting parameter of D approximate to -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L-1)(H2O)(2)]Cl-2 are also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {(FeNbIV)-Nb-II} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb-IV, Mo-IV, W-IV.) X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H2O)Fe(L-1)}{M(CN)(8)}{Fe(L-1)}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L-1)}(2+) and {M(CN)(8)}(4-) units (L-1 stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L-1)) unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L-1)(H2O)(2)]Cl-2 a negative zero field splitting parameter of D approximate to -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L-1)(H2O)(2)]Cl-2 are also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linear compressibility and the thermal expansion of Al-Fe and Al-Mn quasicrystals have been reported to be anisotropic. The authors suggest that the observed anisotropy in these properties could be due to the presence of decagonal quasicrystals rather than icosahedral quasicrystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A spin one XY ferromagnet with uniaxial anisotropy has been investigated, using Green's function technique in random phase approximation (RPA). The Green functions associated with the anisotropy energy are treated without decoupling. A set of coupled equations have been obtained to find the critical temperature Tc and left angle bracket(SZ)2right-pointing angle bracket at Tc as function of the uniaxial anisotropy parameter D. Tc and left angle bracket(SZ)2right-pointing angle bracket at Tc are found to increase with D. The results are compared with the earlier results obtained in the Narath type of RPA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanoindentation technique has been employed to relate the mechanical properties of saccharin single crystals with their internal structure. Indentations were performed on (100) and (011) faces to assess the mechanical anisotropy. The load-displacement (P-h) curves indicate significant differences in the nature of the plastic deformation on the two faces. The P-h curves obtained on the (011) plane are smooth, reflecting homogeneous plasticity. However, displacement bursts (pop-ins) are observed in the P-h curves obtained on the (100) plane suggesting a discrete deformation mechanism. Marginal differences exist in the hardness and modulus on the two faces that may, in part, be rationalized, although one notes that saccharin has a largely three-dimensional close-packed structure. The structural origins of the fundamentally different deformation mechanisms on (100) and (011) are discussed in terms of the dimensionality of the hydrogen bonding networks. Down the (100) planes, the saccharin dimers are stacked and are stabilized by nonspecific van der Wants interactions mostly between aromatic rings. However, down the (011) planes, the molecules are stabilized by more directional and cross-linked C-H ... O hydrogen bonds. This anisotropy in crystal packing and interactions is reflected in the mechanical behavior on these faces. The displacements associated with the pop-ins were found to he integral multiples oldie molecule separation distances. Nanoindentation offers an opportunity to compare experimentally, and in a quantitative way, the various intermolecular interactions that fire present in a molecular crystal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heteronuclear multiple-quantum coherence relaxation rate are calculated for the individual transitions of the S spin in an AIS nuclear spin system assuming that the heteronucleus (S spin) has relaxation contributions from both intramolecular dipole-dipole and chemical shift anisotropy relaxation. The individual multiplet components of the heteronuclear zero- and double-quantum coherences are shown to have different transverse relaxation rates. The cross-correlation between the two relaxation mechanisms is shown to be the dominant cause of the calculated differential line broadening. Experimental data are presented using as an example a uniformly 15N labelled sample of human epidermal growth factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The understanding and control of anisotropy in Fe films grown on cubic systems such as GaAs and MgO has been of interest from the point of view of applications in devices. We report magnetic anisotropy studies on Fe/GaAs(001) and Fe/MgO/GaAs(001) prepared by pulsed laser deposition. In Fe/GaAs(001), magneto optical Kerr effect (MOKE) measurements revealed a dominant uniaxial anisotropy for Fe thickness less than 20 monolayers (ML) and this was confirmed by ferromagnetic resonance (FMR) studies. Multiple steps in the hysteresis loops were observed for Fe films of thickness 20 and 25 ML. Whereas, in Fe/MgO/GaAs(001), even at 25 ML of Fe, the uniaxial anisotropy remained dominant. The anisotropy constants obtained from FMR spectra have shown that the relative strength of uniaxial anisotropy is higher as compared to the cubic anisotropy constant in the case of Fe/MgO/GaAs(001). (C) 2011 American Institute of Physics. doi:10.1063/1.3556941]