7 resultados para analytics

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the major tasks in swarm intelligence is to design decentralized but homogenoeus strategies to enable controlling the behaviour of swarms of agents. It has been shown in the literature that the point of convergence and motion of a swarm of autonomous mobile agents can be controlled by using cyclic pursuit laws. In cyclic pursuit, there exists a predefined cyclic connection between agents and each agent pursues the next agent in the cycle. In this paper we generalize this idea to a case where an agent pursues a point which is the weighted average of the positions of the remaining agents. This point correspond to a particular pursuit sequence. Using this concept of centroidal cyclic pursuit, the behavior of the agents is analyzed such that, by suitably selecting the agents' gain, the rendezvous point of the agents can be controlled, directed linear motion of the agents can be achieved, and the trajectories of the agents can be changed by switching between the pursuit sequences keeping some of the behaviors of the agents invariant. Simulation experiments are given to support the analytical proofs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a semi-automatic tool for annotation of multi-script text from natural scene images. To our knowledge, this is the maiden tool that deals with multi-script text or arbitrary orientation. The procedure involves manual seed selection followed by a region growing process to segment each word present in the image. The threshold for region growing can be varied by the user so as to ensure pixel-accurate character segmentation. The text present in the image is tagged word-by-word. A virtual keyboard interface has also been designed for entering the ground truth in ten Indic scripts, besides English. The keyboard interface can easily be generated for any script, thereby expanding the scope of the toolkit. Optionally, each segmented word can further be labeled into its constituent characters/symbols. Polygonal masks are used to split or merge the segmented words into valid characters/symbols. The ground truth is represented by a pixel-level segmented image and a '.txt' file that contains information about the number of words in the image, word bounding boxes, script and ground truth Unicode. The toolkit, developed using MATLAB, can be used to generate ground truth and annotation for any generic document image. Thus, it is useful for researchers in the document image processing community for evaluating the performance of document analysis and recognition techniques. The multi-script annotation toolokit (MAST) is available for free download.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present a machine learning approach for subject independent human action recognition using depth camera, emphasizing the importance of depth in recognition of actions. The proposed approach uses the flow information of all 3 dimensions to classify an action. In our approach, we have obtained the 2-D optical flow and used it along with the depth image to obtain the depth flow (Z motion vectors). The obtained flow captures the dynamics of the actions in space time. Feature vectors are obtained by averaging the 3-D motion over a grid laid over the silhouette in a hierarchical fashion. These hierarchical fine to coarse windows capture the motion dynamics of the object at various scales. The extracted features are used to train a Meta-cognitive Radial Basis Function Network (McRBFN) that uses a Projection Based Learning (PBL) algorithm, referred to as PBL-McRBFN, henceforth. PBL-McRBFN begins with zero hidden neurons and builds the network based on the best human learning strategy, namely, self-regulated learning in a meta-cognitive environment. When a sample is used for learning, PBLMcRBFN uses the sample overlapping conditions, and a projection based learning algorithm to estimate the parameters of the network. The performance of PBL-McRBFN is compared to that of a Support Vector Machine (SVM) and Extreme Learning Machine (ELM) classifiers with representation of every person and action in the training and testing datasets. Performance study shows that PBL-McRBFN outperforms these classifiers in recognizing actions in 3-D. Further, a subject-independent study is conducted by leave-one-subject-out strategy and its generalization performance is tested. It is observed from the subject-independent study that McRBFN is capable of generalizing actions accurately. The performance of the proposed approach is benchmarked with Video Analytics Lab (VAL) dataset and Berkeley Multimodal Human Action Database (MHAD). (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present a combination of technologies to provide an Energy-on-Demand (EoD) service to enable low cost innovation suitable for microgrid networks. The system is designed around the low cost and simple Rural Energy Device (RED) Box which in combination with Short Message Service (SMS) communication methodology serves as an elementary proxy for Smart meters which are typically used in urban settings. Further, customer behavior and familiarity in using such devices based on mobile experience has been incorporated into the design philosophy. Customers are incentivized to interact with the system thus providing valuable behavioral and usage data to the Utility Service Provider (USP). Data that is collected over time can be used by the USP for analytics envisioned by using remote computing services known as cloud computing service. Cloud computing allows for a sharing of computational resources at the virtual level across several networks. The customer-system interaction is facilitated by a third party Telecom Service provider (TSP). The approximate cost of the RED Box is envisaged to be under USD 10 on production scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early diagnosis of disease is important, because therapeutic intervention is most successful before it spread to the subject. The best health screenings method could be the blood test because the blood contains thousands of bio-molecules coming as by-products from the diseased part of the organism and would be non-invasive approach. The major limitation of this approach is the very low concentrations of the analytes need to be detected. Raman spectroscopy has been proven as one of the cutting edge technique applied in the field of histology, cytology and clinical chemistry. The primary obstacle of Raman spectroscopy is the low signal intensities. One of the promising approaches to overcome that is surface enhanced Raman spectroscopy (SERS) which has opened novel opportunities for chemical and biomedical analytics. Albumin is one of the most abundant proteins in blood, produced by liver. The state of albumin in serum determines the health of the liver and kidney. Serum albumin helps to transport many small molecules such as fatty acids, bilirubin, calcium, drugs through the blood. In this study, SERS is being used for the quantification and to understand of binding mechanism serum albumin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In big data image/video analytics, we encounter the problem of learning an over-complete dictionary for sparse representation from a large training dataset, which cannot be processed at once because of storage and computational constraints. To tackle the problem of dictionary learning in such scenarios, we propose an algorithm that exploits the inherent clustered structure of the training data and make use of a divide-and-conquer approach. The fundamental idea behind the algorithm is to partition the training dataset into smaller clusters, and learn local dictionaries for each cluster. Subsequently, the local dictionaries are merged to form a global dictionary. Merging is done by solving another dictionary learning problem on the atoms of the locally trained dictionaries. This algorithm is referred to as the split-and-merge algorithm. We show that the proposed algorithm is efficient in its usage of memory and computational complexity, and performs on par with the standard learning strategy, which operates on the entire data at a time. As an application, we consider the problem of image denoising. We present a comparative analysis of our algorithm with the standard learning techniques that use the entire database at a time, in terms of training and denoising performance. We observe that the split-and-merge algorithm results in a remarkable reduction of training time, without significantly affecting the denoising performance.