166 resultados para ambient noise, acoustics, fjord, shipping
em Indian Institute of Science - Bangalore - Índia
Resumo:
We consider the problem of signal estimation where the observed time series is modeled as y(i) = x(i) + s(i) with {x(i)} being an orbit of a chaotic self-map on a compact subset of R-d and {s(i)} a sequence in R-d converging to zero. This model is motivated by experimental results in the literature where the ocean ambient noise and the ocean clutter are found to be chaotic. Making use of observations up to time n, we propose an estimate of s(i) for i < n and show that it approaches s(i) as n -> infinity for typical asymptotic behaviors of orbits. (C) 2010 Elsevier B.V. All rights reserved.
Three-dimensional localization of multiple acoustic sources in shallow ocean with non-Gaussian noise
Resumo:
In this paper, a low-complexity algorithm SAGE-USL is presented for 3-dimensional (3-D) localization of multiple acoustic sources in a shallow ocean with non-Gaussian ambient noise, using a vertical and a horizontal linear array of sensors. In the proposed method, noise is modeled as a Gaussian mixture. Initial estimates of the unknown parameters (source coordinates, signal waveforms and noise parameters) are obtained by known/conventional methods, and a generalized expectation maximization algorithm is used to update the initial estimates iteratively. Simulation results indicate that convergence is reached in a small number of (<= 10) iterations. Initialization requires one 2-D search and one 1-D search, and the iterative updates require a sequence of 1-D searches. Therefore the computational complexity of the SAGE-USL algorithm is lower than that of conventional techniques such as 3-D MUSIC by several orders of magnitude. We also derive the Cramer-Rao Bound (CRB) for 3-D localization of multiple sources in a range-independent ocean. Simulation results are presented to show that the root-mean-square localization errors of SAGE-USL are close to the corresponding CRBs and significantly lower than those of 3-D MUSIC. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
We evaluated trained listener-based acoustic sampling as a reliable and non-invasive method for rapid assessment of ensiferan species diversity in tropical evergreen forests. This was done by evaluating the reliability of identification of species and numbers of calling individuals using psychoacoustic experiments in the laboratory and by comparing psychoacoustic sampling in the field with ambient noise recordings made at the same time. The reliability of correct species identification by the trained listener was 100% for 16 out of 20 species tested in the laboratory. The reliability of identifying the numbers of individuals correctly was 100% for 13 out of 20 species. The human listener performed slightly better than the instrument in detecting low frequency and broadband calls in the field, whereas the recorder detected high frequency calls with greater probability. To address the problem of pseudoreplication during spot sampling in the field, we monitored the movement of calling individuals using focal animal sampling. The average distance moved by calling individuals for 17 out of 20 species was less than 1.5 m in half an hour. We suggest that trained listener-based sampling is preferable for crickets and low frequency katydids, whereas broadband recorders are preferable for katydid species with high frequency calls for accurate estimation of ensiferan species richness and relative abundance in an area.
Resumo:
In this paper, we propose the first approximation for thickness of Quaternary sediment and late Quaternary early Tertiary topography for the part of lower reaches of Narmada valley in a systematic way using the shallow seismic method, that records both horizontal and vertical components of the microtremor (ambient noise) caused by natural processes. The measurements of microtremors were carried out at 31 sites spaced at a grid interval of 5 km s using Lennartz seismometer (5 s period) and City shark-II data acquisition system. The signals recorded were analysed for horizontal to the vertical (H/V) spectral ratio using GEOPSY software. For the present study, we concentrate on frequency range between 0.2 Hz and 10 Hz. The thickness of unconsolidated sediments at various sites is calculated based on non-linear regression equations proposed by Ibs-von Seht and Wohlenberg (1999) and Parolai et al. (2002). The estimated thickness is used to plot digital elevation model and cross profiles correlating with geomorphology and geology of the study area. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents an overview of the seismic microzonation and the grade/level based study along with methods used for estimating hazard. The principles of seismic microzonation along with some current practices are discussed. Summary of seismic microzonation experiments carried out in India is presented. A detailed work of seismic microzonation of Bangalore has been presented as a case study. In this case study, a seismotectonic map for microzonation area has been developed covering 350 km radius around Bangalore, India using seismicity and seismotectonic parameters of the region. For seismic microzonation Bangalore Mahanagar Palike (BMP) area of 220 km2 has been selected as the study area. Seismic hazard analysis has been carried out using deterministic as well as probabilistic approaches. Synthetic ground motion at 653 locations, recurrence relation and peak ground acceleration maps at rock level have been generated. A detailed site characterization has been carried out using borehole with standard penetration test (SPT) ―N‖ values and geophysical data. The base map and 3-dimensional sub surface borehole model has been generated for study area using geographical information system (GIS). Multichannel analysis of surface wave (MASW)method has been used to generate one-dimensional shear wave velocity profile at 58 locations and two- dimensional profile at 20 locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 5m intervals up to a depth of 30m. Because of wider variation in the rock depth, equivalent shear for the soil overburden thickness alone has been estimated and mapped using ArcGIS 9.2. Based on equivalent shear wave velocity of soil overburden thickness, the study area is classified as ―site class D‖. Site response study has been carried out using geotechnical properties and synthetic ground motions with program SHAKE2000.The soil in the study area is classified as soil with moderate amplification potential. Site response results obtained using standard penetration test (SPT) ―N‖ values and shear wave velocity are compared, it is found that the results based on shear wave velocity is lower than the results based on SPT ―N‖ values. Further, predominant frequency of soil column has been estimated based on ambient noise survey measurements using instruments of L4-3D short period sensors equipped with Reftek 24 bit digital acquisition systems. Predominant frequency obtained from site response study is compared with ambient noise survey. In general, predominant frequencies in the study area vary from 3Hz to 12Hz. Due to flat terrain in the study area, the induced effect of land slide possibility is considered to be remote. However, induced effect of liquefaction hazard has been estimated and mapped. Finally, by integrating the above hazard parameters two hazard index maps have been developed using Analytic Hierarchy Process (AHP) on GIS platform. One map is based on deterministic hazard analysis and other map is based on probabilistic hazard analysis. Finally, a general guideline is proposed by bringing out the advantages and disadvantages of different approaches.
Resumo:
This paper presents an overview of the seismic microzonation and the grade/level based study along with methods used for estimating hazard. The principles of seismic microzonation along with some current practices are discussed. Summary of seismic microzonation experiments carried out in India is presented. A detailed work of seismic microzonation of Bangalore has been presented as a case study. In this case study, a seismotectonic map for microzonation area has been developed covering 350 km radius around Bangalore, India using seismicity and seismotectonic parameters of the region. For seismic microzonation Bangalore Mahanagar Palike (BMP) area of 220 km2 has been selected as the study area. Seismic hazard analysis has been carried out using deterministic as well as probabilistic approaches. Synthetic ground motion at 653 locations, recurrence relation and peak ground acceleration maps at rock level have been generated. A detailed site characterization has been carried out using borehole with standard penetration test (SPT) ―N‖ values and geophysical data. The base map and 3-dimensional sub surface borehole model has been generated for study area using geographical information system (GIS). Multichannel analysis of surface wave (MASW)method has been used to generate one-dimensional shear wave velocity profile at 58 locations and two- dimensional profile at 20 locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 5m intervals up to a depth of 30m. Because of wider variation in the rock depth, equivalent shear for the soil overburden thickness alone has been estimated and mapped using ArcGIS 9.2. Based on equivalent shear wave velocity of soil overburden thickness, the study area is classified as ―site class D‖. Site response study has been carried out using geotechnical properties and synthetic ground motions with program SHAKE2000.The soil in the study area is classified as soil with moderate amplification potential. Site response results obtained using standard penetration test (SPT) ―N‖ values and shear wave velocity are compared, it is found that the results based on shear wave velocity is lower than the results based on SPT ―N‖ values. Further, predominant frequency of soil column has been estimated based on ambient noise survey measurements using instruments of L4-3D short period sensors equipped with Reftek 24 bit digital acquisition systems. Predominant frequency obtained from site response study is compared with ambient noise survey. In general, predominant frequencies in the study area vary from 3Hz to 12Hz. Due to flat terrain in the study area, the induced effect of land slide possibility is considered to be remote. However, induced effect of liquefaction hazard has been estimated and mapped. Finally, by integrating the above hazard parameters two hazard index maps have been developed using Analytic Hierarchy Process (AHP) on GIS platform. One map is based on deterministic hazard analysis and other map is based on probabilistic hazard analysis. Finally, a general guideline is proposed by bringing out the advantages and disadvantages of different approaches.
Resumo:
Localization of underwater acoustic sources is a problem of great interest in the area of ocean acoustics. There exist several algorithms for source localization based on array signal processing.It is of interest to know the theoretical performance limits of these estimators. In this paper we develop expressions for the Cramer-Rao-Bound (CRB) on the variance of direction-of-arrival(DOA) and range-depth estimators of underwater acoustic sources in a shallow range-independent ocean for the case of generalized Gaussian noise. We then study the performance of some of the popular source localization techniques,through simulations, for DOA/range-depth estimation of underwater acoustic sources in shallow ocean by comparing the variance of the estimators with the corresponding CRBs.
Resumo:
Breakout noise from HVAC ducts is important at low frequencies, and the coupling between the acoustic waves and the structural waves plays a critical role in the prediction of the transverse transmission loss. This paper describes the analytical calculation of breakout noise by incorporating three-dimensional effects along with the acoustical and structural wave coupling phenomena. The first step in the breakout noise prediction is to calculate the inside duct pressure field and the normal duct wall vibration by using the solution of the governing differential equations in terms of Green's function. The resultant equations are rearranged in terms of impedance and mobility, which results in a compact matrix formulation. The Green's function selected for the current problem is the cavity Green's function with modification of wave number in the longitudinal direction in order to incorporate the terminal impedance. The second step is to calculate the radiated sound power from the compliant duct walls by means of an ``equivalent unfolded plate'' model. The transverse transmission loss from the duct walls is calculated using the ratio of the incident power due to surface source inside the duct to the acoustic power radiated from the compliant duct walls. Analytical results are validated with the FE-BE numerical models.
Resumo:
Exhaust noise in engines has always been a major source of automotive noise. Challenges for muffler design have been constraints on size, back pressure, and, of course, the cost. Designing for sufficient insertion loss at the engine firing frequency and the first few harmonics has been the biggest challenge. Most advances in the design of efficient mufflers have resulted from linear plane wave theory, making use of the transfer matrix method. This review paper deals with evaluating approximate source characteristics required for prediction of the unmuffled intake and exhaust noise, making use of the electroacoustical analogies. In the last few years, significant advances have been made in the analysis of variable area perforated ducts, transverse plane wave analysis of short elliptical as well as circular chambers, double-tuned expansion chambers and concentric tube resonators, catalytic converters, diesel particulate filters, air cleaners, etc. The development of long strand fibrous materials that can be used in hot exhaust systems without binders has led to the use of combination mufflers in exhaust systems. Breakthroughs have been achieved in the prediction and control of breakout noise from the elliptical and circular muffler shell as well as the end plates of typical mufflers. Diesel particulate filters and inlet air cleaners have also been modeled acoustically. Some of these recent advances are the subject of this review paper.
Resumo:
In this letter, we present the results of systematic experimental investigations of the effect of different chemical environments on the low frequency resistance fluctuations of single layer graphene field effect transistors. The shape of the power spectral density of noise was found to be determined by the energetics of the adsorption-desorption of molecules from the graphene surface making it the dominant source of noise in these devices. We also demonstrate a method of quantitatively determining the adsorption energies of chemicals on graphene surface based on noise measurements. We find that the magnitude of noise is extremely sensitive to the nature and amount of the chemical species present. We propose that a chemical sensor based on the measurement of low frequency resistance fluctuations of single layer graphene field effect transistor devices will have extremely high sensitivity, very high specificity, high fidelity, and fast response times. (c) 2015 AIP Publishing LLC.
Resumo:
We demonstrate that the low-frequency resistance uctuations, or noise, in bilayer graphene is strongly connected to its band structure, and displays a minimum when the gap between the conduction and valence band is zero. Using double-gated bilayer graphene devices we have tuned the zero gap and charge neutrality points independently, which oers a versatile mechanism to investigate the low-energy band structure, charge localization and screening properties of bilayer graphene.
Resumo:
Possible integration of Single Electron Transistor (SET) with CMOS technology is making the study of semiconductor SET more important than the metallic SET and consequently, the study of energy quantization effects on semiconductor SET devices and circuits is gaining significance. In this paper, for the first time, the effects of energy quantization on SET inverter performance are examined through analytical modeling and Monte Carlo simulations. It is observed that the primary effect of energy quantization is to change the Coulomb Blockade region and drain current of SET devices and as a result affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. It is shown that SET inverter designed with CT : CG = 1/3 (where CT and CG are tunnel junction and gate capacitances respectively) offers maximum robustness against energy quantization.
Resumo:
We demonstrate that the low-frequency resistance fluctuations, or noise, in bilayer graphene are strongly connected to its band structure and display a minimum when the gap between the conduction and valence band is zero. Using double-gated bilayer graphene devices we have tuned the zero gap and charge neutrality points independently, which offers a versatile mechanism to investigate the low-energy band structure, charge localization, and screening properties of bilayer graphene.
Resumo:
The paper presents the results of an experimental study regarding the effect of the lateral dimension of the receiving water on the spreading, mixing, and temperature decay of a horizontal buoyant surface jet. The widths of the ambient water in the experiments have been 240, 120, 90 and 60 times the diameter of the jet nozzle. Based on the experimental data, correlations are carried out and empirical equations for prediction of jet width, thickness in vertical direction and longitudinal temperature decay are obtained. The available data of earlier investigators are included to obtain generalized equations for the spreading and temperature decay. Similarity of temperature profiles in the lateral and vertical directions is observed. The longitudinal temperature decay is found to vary inversely with distance in the flow direction and ¼th power of the densimetric Froude number.
Resumo:
Acoustic impedance of a termination, or of a passive subsystem, needs to be measured not only for acoustic lining materials but also in the exhaust systems of flow machinery, where mean flow introduces peculiar problems. Out of the various methods of measurement of acoustic impedance, the discrete frequency, steady state, impedance tube method [1] is most reliable, though time consuming, and requires no special instrumentation.