4 resultados para alternate business mechanisms

em Indian Institute of Science - Bangalore - Índia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A business cluster is a co-located group of micro, small, medium scale enterprises. Such firms can benefit significantly from their co-location through shared infrastructure and shared services. Cost sharing becomes an important issue in such sharing arrangements especially when the firms exhibit strategic behavior. There are many cost sharing methods and mechanisms proposed in the literature based on game theoretic foundations. These mechanisms satisfy a variety of efficiency and fairness properties such as allocative efficiency, budget balance, individual rationality, consumer sovereignty, strategyproofness, and group strategyproofness. In this paper, we motivate the problem of cost sharing in a business cluster with strategic firms and illustrate different cost sharing mechanisms through the example of a cluster of firms sharing a logistics service. Next we look into the problem of a business cluster sharing ICT (information and communication technologies) infrastructure and explore the use of cost sharing mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we first describe a framework to model the sponsored search auction on the web as a mechanism design problem. Using this framework, we describe two well-known mechanisms for sponsored search auction-Generalized Second Price (GSP) and Vickrey-Clarke-Groves (VCG). We then derive a new mechanism for sponsored search auction which we call optimal (OPT) mechanism. The OPT mechanism maximizes the search engine's expected revenue, while achieving Bayesian incentive compatibility and individual rationality of the advertisers. We then undertake a detailed comparative study of the mechanisms GSP, VCG, and OPT. We compute and compare the expected revenue earned by the search engine under the three mechanisms when the advertisers are symmetric and some special conditions are satisfied. We also compare the three mechanisms in terms of incentive compatibility, individual rationality, and computational complexity. Note to Practitioners-The advertiser-supported web site is one of the successful business models in the emerging web landscape. When an Internet user enters a keyword (i.e., a search phrase) into a search engine, the user gets back a page with results, containing the links most relevant to the query and also sponsored links, (also called paid advertisement links). When a sponsored link is clicked, the user is directed to the corresponding advertiser's web page. The advertiser pays the search engine in some appropriate manner for sending the user to its web page. Against every search performed by any user on any keyword, the search engine faces the problem of matching a set of advertisers to the sponsored slots. In addition, the search engine also needs to decide on a price to be charged to each advertiser. Due to increasing demands for Internet advertising space, most search engines currently use auction mechanisms for this purpose. These are called sponsored search auctions. A significant percentage of the revenue of Internet giants such as Google, Yahoo!, MSN, etc., comes from sponsored search auctions. In this paper, we study two auction mechanisms, GSP and VCG, which are quite popular in the sponsored auction context, and pursue the objective of designing a mechanism that is superior to these two mechanisms. In particular, we propose a new mechanism which we call the OPT mechanism. This mechanism maximizes the search engine's expected revenue subject to achieving Bayesian incentive compatibility and individual rationality. Bayesian incentive compatibility guarantees that it is optimal for each advertiser to bid his/her true value provided that all other agents also bid their respective true values. Individual rationality ensures that the agents participate voluntarily in the auction since they are assured of gaining a non-negative payoff by doing so.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With technology scaling, vulnerability to soft errors in random logic is increasing. There is a need for on-line error detection and protection for logic gates even at sea level. The error checker is the key element for an on-line detection mechanism. We compare three different checkers for error detection from the point of view of area, power and false error detection rates. We find that the double sampling checker (used in Razor), is the simplest and most area and power efficient, but suffers from very high false detection rates of 1.15 times the actual error rates. We also find that the alternate approaches of triple sampling and integrate and sample method (I&S) can be designed to have zero false detection rates, but at an increased area, power and implementation complexity. The triple sampling method has about 1.74 times the area and twice the power as compared to the Double Sampling method and also needs a complex clock generation scheme. The I&S method needs about 16% more power with 0.58 times the area as double sampling, but comes with more stringent implementation constraints as it requires detection of small voltage swings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we study thermodynamic properties of an important class of single-chain magnets (SCMs), where alternate units are isotropic and anisotropic with anisotropy axes being non-collinear. This class of SCMs shows slow relaxation at low temperatures which results from the interplay of two different relaxation mechanisms, namely dynamical and thermal. Here anisotropy is assumed to be large and negative, as a result, anisotropic units behave like canted spins at low temperatures; but even then simple Ising-type model does not capture the essential physics of the system due to quantum mechanical nature of the isotropic units. We here show how statistical behavior of this class of SCMs can be studied using a transfer matrix (TM) method. We also, for the first time, discuss in detail how weak inter-chain interactions can be treated by a TM method. The finite size effect is also discussed which becomes important for low temperature dynamics. At the end of this paper, we apply this technique to study a real helical chain magnet.