18 resultados para alternance training system
em Indian Institute of Science - Bangalore - Índia
Resumo:
Balance and stability are very important for everybody and especially for sports-person who undergo extreme physical activities. Balance and stability exercises not only have a great impact on the performance of the sportsperson but also play a pivotal role in their rehabilitation. Therefore, it is very essential to have knowledge about a sportsperson’s balance and also to quantify the same. In this work, we propose a system consisting of a wobble board, with a gyro enhanced orientation sensor and a motion display for visual feedback to help the sportsperson improve their stability. The display unit gives in real time the orientation of the wobble board, which can help the sportsperson to apply necessary corrective forces to maintain neutral position. The system is compact and portable. We also quantify balance and stability using power spectral density. The sportsperson is made stand on the wobble board and the angular orientation of the wobble board is recorded for each 0.1 second interval. The signal is analized using discrete Fourier transforms. The power of this signal is related to the stability of the subject. This procedure is used to measure the balance and stability of an elite cricket team. Representative results are shown below: Table 1 represents power comparison of two subjects and Table 2 represents power comparison of left leg and right leg of one subject. This procedure can also be used in clinical practice to monitor improvement in stability dysfunction of sportsperson with injuries or other related problems undergoing rehabilitation.
Resumo:
This paper investigates the diversity-multiplexing gain tradeoff (DMT) of a time-division duplex (TDD) single-input multiple-output (SIMO) system with perfect channel state information (CSI) at the receiver (CSIR) and partial CSI at the transmitter (CSIT). The partial CSIT is acquired through a training sequence from the receiver to the transmitter. The training sequence is chosen in an intelligent manner based on the CSIR, to reduce the training length by a factor of r, the number of receive antennas. We show that, for the proposed training scheme and a given channel coherence time, the diversity order increases linearly with r for nonzero multiplexing gain. This is a significant improvement over conventional orthogonal training schemes.
Resumo:
Owing to the increased customer demands for make-to-order products and smaller product life-cycles, today assembly lines are designed to ensure a quick switch-over from one product model to another for companies' survival in market place. The complexity associated with the decisions pertaining to the type of training and number of workers and their exposition to the different tasks especially in the current era of customized production is a serious problem that the managers and the HRD gurus are facing in industry. This paper aims to determine the amount of cross-training and dynamic deployment policy caused by workforce flexibility for a make-to-order assembly. The aforementioned issues have been dealt with by adopting the concept of evolutionary fuzzy system because of the linguistic nature of the attributes associated with product variety and task complexity. A fuzzy system-based methodology is proposed to determine the amount of cross-training and dynamic deployment policy. The proposed methodology is tested on 10 sample products of varying complexities and the results obtained are in line with the conclusions drawn by previous researchers.
Resumo:
This paper presents the development of a neural network based power system stabilizer (PSS) designed to enhance the damping characteristics of a practical power system network representing a part of Electricity Generating Authority of Thailand (EGAT) system. The proposed PSS consists of a neuro-identifier and a neuro-controller which have been developed based on functional link network (FLN) model. A recursive on-line training algorithm has been utilized to train the two neural networks. Simulation results have been obtained under various operating conditions and severe disturbance cases which show that the proposed neuro-PSS can provide a better damping to the local as well as interarea modes of oscillations as compared to a conventional PSS
Resumo:
In this letter, we analyze the Diversity Multiplexinggain Tradeoff (DMT) performance of a training-based reciprocal Single Input Multiple Output (SIMO) system. Assuming Channel State Information (CSI) is available at the Receiver (CSIR), we propose a channel-dependent power-controlled Reverse Channel Training (RCT) scheme that enables the transmitter to directly estimate the power control parameter to be used for the forwardlink data transmission. We show that, with an RCT power of (P) over bar (gamma), gamma > 0 and a forward data transmission power of (P) over bar, our proposed scheme achieves an infinite diversity order for 0 <= g(m) < L-c-L-B,L-tau/L-c min(gamma, 1) and r > 2, where g(m) is the multiplexing gain, L-c is the channel coherence time, L-B,L-tau is the RCT duration and r is the number of receive antennas. We also derive an upper bound on the outage probability and show that it goes to zero asymptotically as exp(-(P) over bar (E)), where E (sic) (gamma - g(m)L(c)/L-c-L-B,L-tau), at high (P) over bar. Thus, the proposed scheme achieves a significantly better DMT performance compared to the finite diversity order achieved by channel-agnostic, fixed-power RCT schemes.
Resumo:
This paper considers the design of a power-controlled reverse channel training (RCT) scheme for spatial multiplexing (SM)-based data transmission along the dominant modes of the channel in a time-division duplex (TDD) multiple-input and multiple-output (MIMO) system, when channel knowledge is available at the receiver. A channel-dependent power-controlled RCT scheme is proposed, using which the transmitter estimates the beamforming (BF) vectors required for the forward-link SM data transmission. Tight approximate expressions for 1) the mean square error (MSE) in the estimate of the BF vectors, and 2) a capacity lower bound (CLB) for an SM system, are derived and used to optimize the parameters of the training sequence. Moreover, an extension of the channel-dependent training scheme and the data rate analysis to a multiuser scenario with M user terminals is presented. For the single-mode BF system, a closed-form expression for an upper bound on the average sum data rate is derived, which is shown to scale as ((L-c - L-B,L- tau)/L-c) log logM asymptotically in M, where L-c and L-B,L- tau are the channel coherence time and training duration, respectively. The significant performance gain offered by the proposed training sequence over the conventional constant-power orthogonal RCT sequence is demonstrated using Monte Carlo simulations.
Resumo:
This paper investigates the problem of designing reverse channel training sequences for a TDD-MIMO spatial-multiplexing system. Assuming perfect channel state information at the receiver and spatial multiplexing at the transmitter with equal power allocation to them dominant modes of the estimated channel, the pilot is designed to ensure an stimate of the channel which improves the forward link capacity. Using perturbation techniques, a lower bound on the forward link capacity is derived with respect to which the training sequence is optimized. Thus, the reverse channel training sequence makes use of the channel knowledge at the receiver. The performance of orthogonal training sequence with MMSE estimation at the transmitter and the proposed training sequence are compared. Simulation results show a significant improvement in performance.
Resumo:
The recently developed single network adaptive critic (SNAC) design has been used in this study to design a power system stabiliser (PSS) for enhancing the small-signal stability of power systems over a wide range of operating conditions. PSS design is formulated as a discrete non-linear quadratic regulator problem. SNAC is then used to solve the resulting discrete-time optimal control problem. SNAC uses only a single critic neural network instead of the action-critic dual network architecture of typical adaptive critic designs. SNAC eliminates the iterative training loops between the action and critic networks and greatly simplifies the training procedure. The performance of the proposed PSS has been tested on a single machine infinite bus test system for various system and loading conditions. The proposed stabiliser, which is relatively easier to synthesise, consistently outperformed stabilisers based on conventional lead-lag and linear quadratic regulator designs.
Resumo:
This paper aims at evaluating the methods of multiclass support vector machines (SVMs) for effective use in distance relay coordination. Also, it describes a strategy of supportive systems to aid the conventional protection philosophy in combating situations where protection systems have maloperated and/or information is missing and provide selective and secure coordinations. SVMs have considerable potential as zone classifiers of distance relay coordination. This typically requires a multiclass SVM classifier to effectively analyze/build the underlying concept between reach of different zones and the apparent impedance trajectory during fault. Several methods have been proposed for multiclass classification where typically several binary SVM classifiers are combined together. Some authors have extended binary SVM classification to one-step single optimization operation considering all classes at once. In this paper, one-step multiclass classification, one-against-all, and one-against-one multiclass methods are compared for their performance with respect to accuracy, number of iterations, number of support vectors, training, and testing time. The performance analysis of these three methods is presented on three data sets belonging to training and testing patterns of three supportive systems for a region and part of a network, which is an equivalent 526-bus system of the practical Indian Western grid.
Resumo:
This paper proposes a Single Network Adaptive Critic (SNAC) based Power System Stabilizer (PSS) for enhancing the small-signal stability of power systems over a wide range of operating conditions. SNAC uses only a single critic neural network instead of the action-critic dual network architecture of typical adaptive critic designs. SNAC eliminates the iterative training loops between the action and critic networks and greatly simplifies the training procedure. The performance of the proposed PSS has been tested on a Single Machine Infinite Bus test system for various system and loading conditions. The proposed stabilizer, which is relatively easier to synthesize, consistently outperformed stabilizers based on conventional lead-lag and linear quadratic regulator designs.
Resumo:
While wireless LAN (WLAN) is very popular now a days, its performance deteriorates in the presence of other signals like Bluetooth (BT) signal that operate in the same band as WLAN. Present interference mitigation techniques in WLAN due to BT cancel interference in WLAN sub carrier where BT has hopped but do not cancel interference in the adjacent sub carriers. In this paper BT interference signal in all the OFDM sub carriers is estimated. That is, leakage of BT in other sub carriers including the sub carriers in which it has hopped is also measured. BT signals are estimated using the training signals of OFDM system. Simulation results in AWGN noise show that proposed algorithm agrees closely with theoretical results.
Resumo:
The development of a neural network based power system damping controller (PSDC) for a static VAr compensator (SVC), designed to enhance the damping characteristics of a power system network representing a part of the Electricity Generating Authority of Thailand (EGAT) system is presented. The proposed stabilising controller scheme of the SVC consists of a neuro-identifier and a neuro-controller which have been developed based on a functional link network (FLN) model. A recursive online training algorithm has been utilised to train the two networks. The simulation results have been obtained under various operating conditions and disturbance cases to show that the proposed stabilising controller can provide a better damping to the low frequency oscillations, as compared to the conventional controllers. The effectiveness of the proposed stabilising controller has also been compared with a conventional power system stabiliser provided in the generator excitation system
Resumo:
The development of a neural network based power system damping controller (PSDC) for a static Var compensator (SVC), designed to enhance the damping characteristics of a power system network representing a part of the Electricity Generating Authority of Thailand (EGAT) system is presented. The proposed stabilising controller scheme of the SVC consists of a neuro-identifier and a neuro-controller which have been developed based on a functional link network (FLN) model. A recursive online training algorithm has been utilised to train the two networks. The simulation results have been obtained under various operating conditions and disturbance cases to show that the proposed stabilising controller can provide a better damping to the low frequency oscillations, as compared to the conventional controllers. The effectiveness of the proposed stabilising controller has also been compared with a conventional power system stabiliser provided in the generator excitation system.
Resumo:
Fast and efficient channel estimation is key to achieving high data rate performance in mobile and vehicular communication systems, where the channel is fast time-varying. To this end, this work proposes and optimizes channel-dependent training schemes for reciprocal Multiple-Input Multiple-Output (MIMO) channels with beamforming (BF) at the transmitter and receiver. First, assuming that Channel State Information (CSI) is available at the receiver, a channel-dependent Reverse Channel Training (RCT) signal is proposed that enables efficient estimation of the BF vector at the transmitter with a minimum training duration of only one symbol. In contrast, conventional orthogonal training requires a minimum training duration equal to the number of receive antennas. A tight approximation to the capacity lower bound on the system is derived, which is used as a performance metric to optimize the parameters of the RCT. Next, assuming that CSI is available at the transmitter, a channel-dependent forward-link training signal is proposed and its power and duration are optimized with respect to an approximate capacity lower bound. Monte Carlo simulations illustrate the significant performance improvement offered by the proposed channel-dependent training schemes over the existing channel-agnostic orthogonal training schemes.
Resumo:
Transmit antenna selection (AS) has been adopted in contemporary wideband wireless standards such as Long Term Evolution (LTE). We analyze a comprehensive new model for AS that captures several key features about its operation in wideband orthogonal frequency division multiple access (OFDMA) systems. These include the use of channel-aware frequency-domain scheduling (FDS) in conjunction with AS, the hardware constraint that a user must transmit using the same antenna over all its assigned subcarriers, and the scheduling constraint that the subcarriers assigned to a user must be contiguous. The model also captures the novel dual pilot training scheme that is used in LTE, in which a coarse system bandwidth-wide sounding reference signal is used to acquire relatively noisy channel state information (CSI) for AS and FDS, and a dense narrow-band demodulation reference signal is used to acquire accurate CSI for data demodulation. We analyze the symbol error probability when AS is done in conjunction with the channel-unaware, but fair, round-robin scheduling and with channel-aware greedy FDS. Our results quantify how effective joint AS-FDS is in dispersive environments, the interactions between the above features, and the ability of the user to lower SRS power with minimal performance degradation.