191 resultados para air-sealed test
em Indian Institute of Science - Bangalore - Índia
Resumo:
The effect of the test gas on the flow field around a 120degrees apex angle blunt cone has been investigated in a shock tunnel at a nominal Mach number of 5.75. The shock standoff distance around the blunt cone was measured by an electrical discharge technique using both carbon dioxide and air as test gases. The forebody laminar convective heat transfer to the blunt cone was measured with platinum thin-film sensors in both air and carbon dioxide environments. An increase of 10 to 15% in the measured heat transfer values was observed with carbon dioxide as the test gas in comparison to air. The measured thickness of the shock layer along the stagnation streamline was 3.57 +/- 0.17 mm in air and 3.29 +/- 0.26 mm in carbon dioxide. The computed thickness of the shock layer for air and carbon dioxide were 3.98 mm and 3.02 mm, respectively. The observed increase in the measured heat transfer rates in carbon dioxide compared to air was due to the higher density ratio across the bow shock wave and the reduced shock layer thickness.
Resumo:
The presence of vacuum inside the cavity of a capacitive micromachined ultrasonic transducer (CMUT) causes the membrane of the device (which is the main vibrating structural component) to deflect towards the substrate, thereby causing a reduction in the effective gap height. This reduction causes a drastic decrease in the pull-in voltage of the device limiting the DC bias at which the device can be operated for maximum efficiency. In addition, this initial deflection of the membrane due to atmospheric pressure, causes significant stress stiffening of the the membrane, changing the natural frequency of the device significantly from the design value. To circumvent the deleterious effects of vacuum in the sealed cavity, we investigate the possibility of using sealed CMUT cavities with air inside at ambient pressure. In order to estimate the transducer loss due to the presence of air in the sealed cavity, we evaluate the resulting damping and determine the forces acting on the vibrating membrane resulting from the compression of the trapped air film. We take into account the flexure of the top vibrating membrane instead of assuming the motion to be parallel-plate like. Towards this end, we solve the linearized Reynolds equation using the appropriate boundary conditions and show that, for a sealed CMUT cavity, the presence of air does not cause any squeeze film damping.
Resumo:
Modifications made in a solar air collector inlet duct to achieve uniform velocity of air in the absorber duct are described. Measurements of temperature and pressure at various points in the duct gave information on the distribution of air in the absorber duct. A thermal performance test conducted on the collector with a vaned diffuser showed some significant improvement compared with a diffuser without vanes.
Resumo:
This paper deals with the characterisation of tar from two configurations of bioresidue thermochemical conversion reactors designed for producer gas based power generation systems. The pulverised fuel reactor is a cyclone system (R1) and the solid bioresidue reactor (denoted R2) is an open top twin air entry system both at 75-90 kg/h capacity (to generate electricity similar to 100 kVA). The reactor, R2, has undergone rigorous test in a major Indo-Swiss programme for the tar quantity at various conditions. The former is a recent technology development. Tars collected from these systems by a standard tar collection apparatus at the laboratory at Indian Institute of Science have been analysed at the Royal Institute of Technology (KTH), Sweden. The results of these analyses show that these thermochemical conversion reactors behave differently from the earlier reactors reported in literature in so far as tar generation is concerned. The extent of tar in hot gas is about 700-800 ppm for R1 and 70-100 ppm for R2. The amounts of the major compounds - naphthalene and phenol-are much lower that what is generally understood to happen in the gasifiers in Europe. It is suggested that the longer residence times at high temperatures allowed for in these reactors is responsible for this behavior. It is concluded the new generation reactor concepts extensively tried out at lower power levels hold promise for high power atmospheric gasification systems for woody as well as pulverisable bioresidues.
Resumo:
Droplet collision occurs frequently in regions where the droplet number density is high. Even for Lean Premixed and Pre-vaporized (LPP) liquid sprays, the collision effects can be very high on the droplet size distributions, which will in turn affect the droplet vaporization process. Hence, in conjunction with vaporization modeling, collision modeling for such spray systems is also essential. The standard O'Rourke's collision model, usually implemented in CFD codes, tends to generate unphysical numerical artifact when simulations are performed on Cartesian grid and the results are not grid independent. Thus, a new collision modeling approach based on no-time-counter method (NTC) proposed by Schmidt and Rutland is implemented to replace O'Rourke's collision algorithm to solve a spray injection problem in a cylindrical coflow premixer. The so called ``four-leaf clover'' numerical artifacts are eliminated by the new collision algorithm and results from a diesel spray show very good grid independence. Next, the dispersion and vaporization processes for liquid fuel sprays are simulated in a coflow premixer. Two liquid fuels under investigation are jet-A and Rapeseed Methyl Esters (RME). Results show very good grid independence in terms of SMD distribution, droplet number distribution and fuel vapor mass flow rate. A baseline test is first established with a spray cone angle of 90 degrees and injection velocity of 3 m/s and jet-A achieves much better vaporization performance than RME due to its higher vapor pressure. To improve the vaporization performance for both fuels, a series of simulations have been done at several different combinations of spray cone angle and injection velocity. At relatively low spray cone angle and injection velocity, the collision effect on the average droplet size and the vaporization performance are very high due to relatively high coalescence rate induced by droplet collisions. Thus, at higher spray cone angle and injection velocity, the results expectedly show improvement in fuel vaporization performance since smaller droplet has a higher vaporization rate. The vaporization performance and the level of homogeneity of fuel-air mixture can be significantly improved when the dispersion level is high, which can be achieved by increasing the spray cone angle and injection velocity. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The shape dynamics of droplets exposed to an air jet at intermediate droplet Reynolds numbers is investigated. High speed imaging and hot-wire anemometry are employed to examine the mechanism of droplet oscillation. The theory that the vortex shedding behind the droplet induces oscillation is examined. In these experiments, no particular dominant frequency is found in the wake region of the droplet. Hence the inherent free-stream disturbances prove to be driving the droplet oscillations. The modes of droplet oscillation show a band of dominant frequencies near the corresponding natural frequency, further proving that there is no particular forcing frequency involved. In the frequency spectrum of the lowest mode of oscillation for glycerol at the highest Reynolds number, no response is observed below the threshold frequency corresponding to the viscous dissipation time scale. This selective suppression of lower frequencies in the case of glycerol is corroborated by scaling arguments. The influence of surface tension on the droplet oscillation is studied using ethanol as a test fluid. Since a lower surface tension reduces the natural frequency, ethanol shows lower excited frequencies. The oscillation levels of different fluids are quantified using the droplet aspect ratio and correlated in terms of Weber number and Ohnesorge number. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
An implementable nonlinear control design approach is presented for a supersonic air-breathing ramjet engine. The primary objective is to ensure that the thrust generated by the engine tracks the commanded thrust without violating the operational constraints. An important constraint is to manage the shock wave location in the intake so that it neither gets detached nor gets too much inside the intake. Both the objectives are achieved by regulating the fuel flow to the combustion chamber and by varying the throat area of the nozzle simultaneously. The design approach accounts for the nonlinear cross-coupling effects and nullifies those. Also, an extended Kalman filter has been used to filter out the sensor and process noises as well as to make the states available for feedback. Furthermore, independent control design has been carried out for the actuators. To test the performance of the engine for a realistic flight trajectory, a representative trajectory is generated through a trajectory optimization process, which is augmented with a newly-developed finite-time state dependent Riccati equation technique for nullifying the perturbations online. Satisfactory overall performance has been obtained during both climb and cruise phases. (C) 2015 Elsevier Masson SAS. All rights reserved.
Resumo:
Careful study of various aspects presented in the note reveals basic fallacies in the concept and final conclusions.The Authors claim to have presented a new method of determining C-v. However, the note does not contain a new method. In fact, the method proposed is an attempt to generate settlement vs. time data using only two values of (t,8). The Authors have used a rectangular hyperbola method to determine C-v from the predicated 8- t data. In this context, the title of the paper itself is misleading and questionable. The Authors have compared C-v values predicated with measured values, both of them being the results of the rectangular hyperbola method.
Resumo:
Using Terzaghi's degree of consolidation, U, and the time factor, T, relationship, if M-U1 and M-U2 (M-U1 not equal M-U2) are slopes of the U-root T curve at any two time factors T-U1 and T-U2, then it can be shown that a unique relationship exists between T-U2/T-U1, M-U1/M-U2, and TU, (or TU2), and knowing any two of these, the third can be uniquely determined. A chart, called the T chart, has been plotted using these three variables for quickly determining T and U at any experimental time, t, to determine the coefficient of consolidation, c(v), corrected zero settlement, delta(o), and ultimate primary settlement, delta(100). The chart can be used even in those cases where settlement and time, at the instant of load increment, are not known.
Resumo:
Monitoring gas purity is an important aspect of gas recovery stations where air is usually one of the major impurities. Purity monitors of Katherometric type ate commercially available for this purpose. Alternatively, we discuss here a helium gas purity monitor based on acoustic resonance of a cavity at audio frequencies. It measures the purity by monitoring the resonant frequency of a cylindrical cavity filled with the gas under test and excited by conventional telephone transducers fixed at the ends. The use of the latter simplifies the design considerably. The paper discusses the details of the resonant cavity and the electronic circuit along with temperature compensation. The unit has been calibrated with helium gas of known purities. The unit has a response time of the order of 10 minutes and measures the gas purity to an accuracy of 0.02%. The unit has been installed in our helium recovery system and is found to perform satisfactorily.
Resumo:
A general mathematical model for forced air precooling of spherical food products in bulk is developed. The food products are arranged inline to form a rectangular parallelepiped. Chilled air is blown along the height of the package. The governing equations for the transient two-dimensional conduction with internal heat generation in the product, simultaneous heat and mass transfer at the product-air interface and one-dimensional transient energy and species conservation equations for the moist air are solved numerically using finite difference methods. Results are presented in the form of time-temperature histories. Experiments are conducted with model foods in a laboratory scale air precooling tunnel. The agreement between the theoretical and experimental results is found to be good. In general, a single product analysis fails to predict the precooling characteristics of bulk loads of food products. In the range of values investigated, the respiration heat is found to have a negligible effect.
Resumo:
Taylor (1948) suggested the method for determination of the settlement, d, corresponding to 90% consolidation utilizing the characteristics of the degree of consolidation, U, versus the square root of the time factor, square root of T, plot. Based on the properties of the slope of U versus square root of T curve, a new method is proposed to determine d corresponding to any U above 70% consolidation for evaluation of the coefficient of consolidation, Cn. The effects of the secondary consolidation on the Cn value at different percentages of consolidation can be studied. Cn, closer to the field values, can be determined in less time as compared to Taylor's method. At any U in between 75 and 95% consolidation, Cn(U) due to the new method lies in between Taylor's Cn and Casagrande's Cn.
Resumo:
Formative time lags in nitrogen, oxygen, and dry air are measured with and without a magnetic field over a range of gas pressures (0.05 ' p ' 20.2 torr 5 kPa to 2 MPa, electric field strengths (1.8xO14 EEs 60xlO V m l) and magnetic field strengths (85xl0-4 < B ' 16x10-2 Tesla). For experiments below the Paschen minimum, the electrodes are designed to ensure that breakdown occurs over longer gaps and for experiments above the Paschen minimum, a coaxial cylindrical system is employed. The experimental technique consists of applying pulse voltages to the gap at various constant values of E/p and B/p and measuring the time lags from which the formative time lags are separated. In the gases studed, formative time lags decrease on application of a magnetic field at a given pressure for conditions below the Paschen minimum. The voltages at which the formative time lags remain the same without and with magnetic fields are determined, and electron molecule collision frequencies (v/p) are determined using the Effective Reduced Electric Field [EREF] concept. With increasing ratio of E/p in crossed fields, v/p decreases in all the three gases. Measurements above the Paschen minimum yield formative time lags which increase on application of a magnetic field. Formative time lags in nitrogen in ExB fields are calculated assuming an average collision frequency of 8.5x109 sec-1 torr 1. It is concluded that the EREF concept can be applied to explain formative time lags in ExB fields.
Resumo:
This article discusses the design and development of GRDB (General Purpose Relational Data Base System) which has been implemented on a DEC-1090 system in Pascal. GRDB is a general purpose database system designed to be completely independent of the nature of data to be handled, since it is not tailored to the specific requirements of any particular enterprise. It can handle different types of data such as variable length records and textual data. Apart from the usual database facilities such as data definition and data manipulation, GRDB supports User Definition Language (UDL) and Security definition language. These facilities are provided through a SEQUEL-like General Purpose Query Language (GQL). GRDB provides adequate protection facilities up to the relation level. The concept of “security matrix” has been made use of to provide database protection. The concept of Unique IDentification number (UID) and Password is made use of to ensure user identification and authentication. The concept of static integrity constraints has been used to ensure data integrity. Considerable efforts have been made to improve the response time through indexing on the data files and query optimisation. GRDB is designed for an interactive use but alternate provision has been made for its use through batch mode also. A typical Air Force application (consisting of data about personnel, inventory control, and maintenance planning) has been used to test GRDB and it has been found to perform satisfactorily.
Resumo:
It has been shown that it is possible to extend the validity of the Townsend breakdown criterion for evaluating the breakdown voltages in the complete pd range in which Paschen curves are available. Evaluation of the breakdown voltages for air (pd=0.0133 to 1400 kPa · cm), N2(pd=0.0313 to 1400 kPa · cm) and SF6 (pd=0.3000 to 1200 kPa · cm) has been done and in most cases the computed values are accurate to ±3% of the measured values. The computations show that it is also possible to estimate the secondary ionization coefficient ¿ in the pd ranges mentioned above.