216 resultados para acid detergent fiber
em Indian Institute of Science - Bangalore - Índia
Resumo:
We demonstrate the aptitude of supramolecular hydrogel formation using simple bile acid such as lithocholic acid in aqueous solution in the presence of various dimeric or oligomeric amines. By variation of the choice of the amines in such mixtures the gelation properties could be modulated. However, the replacement of lithocholic acid (LCA) by cholic acid or deoxycholic acid resulted in no hydrogel formation. FT-IR studies confirm that the carboxylate and ammonium residues of the two components are involved in the salt (ion-pair) formation. This promotes further assembly of the components reinforced by a continuous hydrogen bonded network leading to gelation. Electron microscopy shows the morphology of the internal organization of gels of two component systems which also depends significantly on the amine part. Variation of the amine component from the simple 1,2-ethanediamine (EDA) to oligomeric amines in such gels of lithocholic acid changes the morphology of the assembly from long one-dimensional nanotubes to three-dimensional complex structures. Single crystal X-ray diffraction analysis with one of the amine-LCA complexes suggested the motif of fiber formation where the amines interact with the carboxylate and hydroxyl moieties through electrostatic forces and hydrogen bonding. From small angle neutron scattering study, it becomes clear that the weak gel from LCA-EDA shows scattering oscillation due to the presence of non-interacting nanotubules while for gels of LCA with oligomeric amines the individual fibers come together to form complex three-dimensional organizations of higher length scale. The rheological properties of this class of two component system provide clear evidence that the flow behavior can be modulated varying the acid-amine ratio.
Resumo:
A commercial acrylic fiber with 92% (w/w) acrylonitrile content was partially hydrolyzed converting a fraction of the nitrile (-CN) groups to carboxylic acid (-COOH) groups, to coat the fiber with polyethylenimine (PEI) resin, which was then crosslinked with glutaraldehyde and further quaternized with ethyl chloroacetate to produce a novel strong-base anionic exchanger in the form of fiber. Designated as PAN(QPEI.XG)(Cl-), the fibrous sorbent was compared with a commercial bead-form resin Amberlite IRA-458(Cl-) in respect of sorption capacity, selectivity, and kinetics for removal of silver thiosulfate complexes from aqueous solutions. Though the saturation level of [Ag(S2O3)(2)](3-) on PAN(QPEI.XG)(Cl-) is considerably less than that on IRA-458(Cl-), the gel-coated fibrous sorbent exhibits, as compared to the bead-form sorbent, a significantly higher sorption selectivity for the silver thiosulfate complex in the presence of excess of other anions Such as S2O32-, SO42-, and Cl-, and a remarkably faster rate of both sorption and stripping. The initial uptake of the sorbate by the fibrous sorbent is nearly instantaneous, reaching up to similar to 80% of the saturation capacity within 10 s, as compared to only similar to 12% on the bead-form sorbent. The high initial rate of uptake fits a shell-core kinetic model for sorption on fiber of cylindrical geometry. With 4M HCl, the stripping of the sorbed silver complex from the fibrous sorbent is clean and nearly instantaneous, while, in contrast, a much slower rate of stripping on the bead-form sorbent leads to its fouling due to a slow decomposition of the silver thiosulfate complex in the acidic medium.
Resumo:
Polyelectrolytes are charged polymer species which electrostatically adsorb onto surfaces in a layer by layer fashion leading to the sequential assembly of multilayer structures. It is known that the morphology of weak polyelectrolyte structures is strongly influenced by environmental variables such as pH. We created a weak polyelectrolyte multilayer structure (similar to 100 nm thick) of cationic polymer poly-allylamine hydrochloride (PAH) and an anionic polymer poly-acrylic acid (PAA) on an etched clad fiber Bragg grating (EFBG) to study the pH induced conformational transitions in the polymer multilayers brought about by the variation in charge density of weak polyelectrolyte groups as a function of pH. The conformational changes of the polyelectrolyte multilayer structure lead to changes in optical density of the adsorbed film which reflects in the shift of the Bragg wavelength from the EFBG. Using the EFBG system we were able to probe reversible and irreversible pH induced transitions in the PAH/PAA weak polyelectrolyte system. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A facile hydrogelation of a p-pyridylenevinylene derivative (PV) bearing oxyethylene chains in the presence of orotic acid (OA) occurs via various non-covalent interactions. Depending on the PV: OA molar ratio, the hydrogel shows vesicle to either cluster-type aggregate or fiber transformation. Visual color tuning, stimuli-responsiveness and injectable properties of the hydrogel are also observed.
Resumo:
The DL- and L-arginine complexes of oxalic acid are made up of zwitterionic positively charged amino acid molecules and semi-oxalate ions. The dissimilar molecules aggregate into separate alternating layers in the former. The basic unit in the arginine layer is a centrosymmetric dimer, while the semi-oxalate ions form hydrogen-bonded strings in their layer. In the L-arginine complex each semi-oxalate ion is surrounded by arginine molecules and the complex can be described as an inclusion compound. The oxalic acid complexes of basic amino acids exhibit a variety of ionization states and stoichiometry. They illustrate the effect of aggregation and chirality on ionization state and stoichiometry, and that of molecular properties on aggregation. The semi-oxalate/oxalate ions tend to be planar, but large departures from planarity are possible. The amino acid aggregation in the different oxalic acid complexes do not resemble one another significantly, but the aggregation of a particular amino acid in its oxalic acid complex tends to have similarities with its aggregation in other structures. Also, semi-oxalate ions aggregate into similar strings in four of the six oxalic acid complexes. Thus, the intrinsic aggregation propensities of individual molecules tend to be retained in the complexes.
Resumo:
The two molecules in the asymmetric unit of adenosine-5'-carboxylic acid, C10H11N5O5, exist as zwitterions with N1 protonated and the carboxyl groups ionized. Both molecules are in an anti conformation with glycosyl torsion angles of -161.4(3) and -155.5(3)degrees. The ribose moieties adopt a C3-endo-C2-exo twist conformation. The pseudo-rotation parameters are P = 0.01(1) and 6.58(1)degrees, and tau(m) = 36.2(2) and 34.6(2)degrees, for molecules A and B, respectively. The carboxyl groups of A and B are not in the standard g(+), g(-) or t conformations. Both Watson-Crick sites, N1 and N6, of the adenine bases are involved in a pair of hydrogen bonds with the dissociated carboxyl groups, forming a cyclic tetramer. The adenine base of molecule A stacks on the ribose O4' atom of a symmetry-related B molecule at a distance of 2.88 Angstrom; the adenine base of B stacks in an analogous way at a distance of 2.91 Angstrom.
Resumo:
An interesting, periodic appearance of a new peak has been observed in the reflected spectrum of a Fiber Bragg Grating (FBG) inscribed in a germanosilicate fiber during thermal treatment. The new peak occurs on the longer wavelength side of the spectrum during heating and on the shorter wavelength side during cooling, following an identical reverse dynamics. Comparison with a commercial grating with 99.9% reflectivity shows a similar decay dynamics. It is proposed that the distortion due to simultaneous erasure and thermal expansion of the index modulation profile may be responsible for the observed anomaly. The reported results help us in understanding the thermal behavior of FBGs and provide additional insights into the mechanisms responsible for the photosensitivity in germanosilicate fibers.
Resumo:
In recent years there has been considerable interest in developing new types of gelators of organic solvents.1 Despite the recent advances, a priori design of a gelator for gelling a given solvent has remained a challenging task. Various noncovalent interactions like hydrogen-bonding,2 metal coordination3 etc. have been used as the driving force for the gelation process. A special class of cholesterol-based gelators were reported by Weiss,4 and by Shinkai.5 Gels derived from these molecules have been used for chiral recognition/sensing,6 for studying photo- and metal-responsive functions,7 and as templates to make hollow fiber silica.8 Other types of organogels have been used for designing polymerized 9 and reverse aerogels,10 and in molecular imprinting.11 Hanabusa’s group has recently reported organogels with a bile acid derivative.12 This has prompted us to disclose our results on a novel electron donor–acceptor (EDA) interaction mediated two-component13 gelator system based on the bile acid14 backbone.
Resumo:
The ultrasonic degradation of poly(acrylic acid), a water-soluble polymer, was studied in the presence of persulfates at different temperatures in binary solvent Mixtures of methanol and water. The degraded samples were analyzed by gel permeation chromatography for the time evolution of the molecular weight distributions. A continuous distribution kinetics model based on midpoint chain scission was developed, and the degradation rate coefficients were determined. The decline in the rate of degradation of poly(acrylic acid) with increasing temperature and with an increment in the methanol content in the binary solvent mixture of methanol and water was attributed to the increased vapor pressure of the solutions. The experimental data showed an augmentation of the degradation rate of the polymer with increasing oxidizing agent (persulfate) concentrations. Different concentrations of three persulfates-potassium persulfate, ammonium persulfate, and sodium persulfate-were used. It was found that the ratio of the polymer degradation rate coefficient to the dissociation rate constant of the persulfate was constant. This implies that the ultrasonic degradation rate of poly(acrylic acid) can be determined a priori in the presence of any initiator.
Resumo:
Energetics of the ground and excited state intramolecular proton transfer in salicylic acid have been studied by ab initio molecular orbital calculations using the 6-31G** basis set at the restricted Hartree-Fock (RHF) and configuration interaction-single excitation (CIS) levels and also using the semiempirical method AM1 at the RHF level as well as with single and pair doubles excitation configuration interaction spanning eight frontier orbitals (PECI = 8). The ab initio potential energy profile for intramolecular proton transfer in the ground state reveals a single minimum corresponding to the primary form, in the first excited singlet state, however, there are two minima corresponding to the primary and tautomeric forms, separated by a barrier of similar to 6 kcal/mol, thus accounting for dual emission in salicylic acid. Electron density changes with electronic excitation and tautomerism indicate no zwitterion formation. Changes in spectral characteristics with change in pH, due to protonation and deprotonation of salicylic acid, are also accounted for, qualitatively. Although the AM1 calculations suggest a substantial barrier for proton transfer in the ground as well as the first excited state of SA, it predicts the transition wavelength in near quantitative accord with the experimental results for salicylic acid and its protonated and deprotonated forms.
Resumo:
In order to explore the anticancer effect associated with the thiazolidinone framework, several 2-(5-((5-(4-chlorophenyl)furan-2-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid derivatives 5(a-1) were synthesized. Variation in the functional group at C-terminal of the thiazolidinone led to set of compounds bearing amide moiety. Their chemical structures were confirmed by H-1 NMR, IR and Mass Spectra analysis. These thiazolidinone compounds containing furan moiety exhibits moderate to strong antiproliferative activity in a cell cycle stage-dependent and dose dependent manner in two different human leukemia cell lines. The importance of the electron donating groups on thiazolidinone moiety was confirmed by MTT and Trypan blue assays and it was concluded that the 4th position of the substituted aryl ring plays a dominant role for its anticancer property. Among the synthesized compounds, 5e and 5f have shown potent anticancer activity on both the cell lines tested. To rationalize the role of electron donating group in the induction of cytotoxicity we have chosen two molecules (5e and 5k) having different electron donating group at different positions. LDH assay, Flow cytometric analysis and DNA fragmentation suggest that 5e is more cytotoxic and able to induce the apoptosis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We have developed a general and efficient method for the stereoselective construction of pyrimidine-based pyranosyl C-2 amino acid nucleosides using NIS-mediated ring opening of 1,2-cyclopropanated sugar derivatives. This methodology has been successfully extended to the synthesis of furanosyl nucleosides, Which have potential applications in the development of novel, nontoxic antifungal therapeutics.
Resumo:
Lead acid batteries are used in hybrid vehicles and telecommunications power supply. For reliable operation of these systems, an indication of state of charge of battery is essential. To determine the state of charge of battery, current integration method combined with open circuit voltage, is being implemented. To reduce the error in the current integration method the dependence of available capacity as a function of discharge current is determined. The current integration method is modified to incorporate this factor. The experimental setup built to obtain the discharge characterstics of the battery is presented.
Resumo:
Iron(III) complexes, (NHEt3)[Fe(III)(sal-met)(2)] and (NHEt3)[Fe(III)(sal-phe)(2)], of amino acid Schiffbase ligands, viz., N-salicylidene-L-methionine and N-salicylidene L-phenylalanine, have been prepared and their binding to bovine serum albumin (BSA) and photo-induced BSA cleavage activity have been investigated. The complexes are structurally characterized by single crystal X-ray crystallography. The crystal Structures of the discrete mononuclear rnonoanionic complexes show FeN2O4 octahedral coordination geometry in which the tridentate dianionic amino acid Schiff base ligand binds through phenolate and carboxylate oxygen and imine nitrogen atoms. The imine nitrogen atoms are trans to each other. The Fe-O and Fe-N bond distances range between 1.9 and 2.1 angstrom. The sal-met complex has two pendant thiomethyl groups. The high-spin iron(III) complexes (mu(eff) similar to 5.9 mu(B)) exhibit quasi-reversible Fe(III)/Fe(II) redox process near -0.6 V vs. SCE in water. These complexes display a visible electronic hand near 480 nm in tris-HCl buffer assignable to the phenolate-to-iron(III) charge transfer transition. The water soluble complexes bind to BSA giving binding constant values of similar to 10(5) M-1. The Complexes show non-specific oxidative cleavage of BSA protein on photo-irradiation with UV-A light of 365 nm.