7 resultados para acceptability
em Indian Institute of Science - Bangalore - Índia
Resumo:
Fuzzy Waste Load Allocation Model (FWLAM), developed in an earlier study, derives the optimal fractional levels, for the base flow conditions, considering the goals of the Pollution Control Agency (PCA) and dischargers. The Modified Fuzzy Waste Load Allocation Model (MFWLAM) developed subsequently is a stochastic model and considers the moments (mean, variance and skewness) of water quality indicators, incorporating uncertainty due to randomness of input variables along with uncertainty due to imprecision. The risk of low water quality is reduced significantly by using this modified model, but inclusion of new constraints leads to a low value of acceptability level, A, interpreted as the maximized minimum satisfaction in the system. To improve this value, a new model, which is a combination Of FWLAM and MFWLAM, is presented, allowing for some violations in the constraints of MFWLAM. This combined model is a multiobjective optimization model having the objectives, maximization of acceptability level and minimization of violation of constraints. Fuzzy multiobjective programming, goal programming and fuzzy goal programming are used to find the solutions. For the optimization model, Probabilistic Global Search Lausanne (PGSL) is used as a nonlinear optimization tool. The methodology is applied to a case study of the Tunga-Bhadra river system in south India. The model results in a compromised solution of a higher value of acceptability level as compared to MFWLAM, with a satisfactory value of risk. Thus the goal of risk minimization is achieved with a comparatively better value of acceptability level.
Resumo:
Over the years, new power requirements for telecommunication, space, automotive and traction applications have arisen which need to be met. Although lead-acid and nickel-cadmium storage batteries continue to be the work horses with limited advances, associated environmental hazards and recycling are still the issues to be resolved. As a result, lead-acid and nickel-cadmium storage batteries have declined in importance whilst nickel-metal hydride and lithium secondary batteries with superior performances have shown greater acceptability in newer applications. These developments are reflected in this article.
Resumo:
Fusion of multiple intrusion detection systems results in a more reliable and accurate detection for a wider class of intrusions. The paper presented here introduces the mathematical basis for sensor fusion and provides enough support for the acceptability of sensor fusion in performance enhancement of intrusion detection systems. The sensor fusion system is characterized and modeled with no knowledge of the intrusion detection systems and the intrusion detection data. The theoretical analysis is supported with an experimental illustration with three of the available intrusion detection systems using the DARPA 1999 evaluation data set.
Resumo:
As Polymer Electrolyte Fuel Cells (PEFCs) are nearing the acceptable performance level for automotive and stationary applications, the focus on the research is shifting more and more toward enhancing their durability that still remains a major concern in their commercial acceptability. Hydrous ruthenium oxide (RuO2) is a promising material for pseudocapacitors due to its high stability, high specific-capacitance and rapid faradaic-reaction. Incorporation of carbon-supported RuO2 (RuO2/C) to platinum (Pt) is found to ameliorate both stability and catalytic activity of fuel cell cathodes that exhibit higher performance and durability in relation to Pt/C cathodes as evidenced by cell polarization, impedance and cyclic voltammetry data. The degradation in performance of Pt-RuO2/C cathodes is found to be only similar to 8% after 10000 accelerated stress test (AST) cycles as against similar to 60% for Pt/C cathodes after 7000 AST cycles under similar conditions. These data are in conformity with the Electrochemical Surface Area and impedance results. Interestingly, Pt-RuO2/C cathodes can withstand more than 10000 AST cycles with only a nominal loss in their performance. Studies on catalytic electrodes with X-ray diffraction, transmission electron microscopy and cross-sectional field-emission scanning electron microscopy reflect that incorporation of RuO2 to Pt helps mitigating aggregation of Pt particles and improves its stability during long-term operation of PEFCs. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.jes113440] All rights reserved.
Resumo:
Thyroxine is a naturally occurring human hormone produced by the thyroid gland. Clinical applications of thyroxine to treat several chronic disorders are limited by poor water solubility and instability under physiological conditions. An inclusion complex of levo-thyroxine (l-thyroxine), the active form of the hormone with gamma cyclodextrin (gamma-CD) has been obtained and studied with the aim of improving oral delivery rather than the injection formulation of the sodium salt. In addition to greater patient acceptability, inclusion complexes often improve aqueous solubility and bioavailability, stability, and reduce toxicity of drugs, thus providing enhanced pharmaceutical formulations. Physicochemical characterization of the inclusion complex was carried out using Fourier transform infrared spectroscopy, X-ray diffractometry, differential scanning calorimetry, scanning electron microscopy and proton nuclear magnetic resonance spectroscopy. Intermolecular dipolar interactions for the inclusion complex were also studied using 2 dimensional ROESY experiments. Formation of the inclusion complex between the protons H3 and H5 of cyclodextrin with aromatic protons of thyroxine was confirmed by their dipolar interaction. Molecular modelling was used to understand the basis for the complex formation and predict the formation of other complexes. Interestingly, we found that l-thyroxine forms an inclusion complex only with the larger gamma-CD and not with other available alpha and beta forms.
Resumo:
In this study, we report on the accuracy, precision and clinical acceptability of the five blood glucose meters available in India. Glucose levels of 100 blood samples were measured with each meter, at IISc health centre laboratory under same conditions and the results were compared with laboratory reference standard. In order to calculate the coefficient of variation (CV), each sample was tested three times. None of the glucometer showed 100 % compliance on CV measure. In terms of accuracy, none of the glucometer satisfied the most stringent ADA-1994 standard. In general all the glucometers showed improved accuracy with respect to the most relaxed ISO 1597:2003 standard. The Clarke error grid analysis was performed to assess the clinical acceptability of the glucometers. All five glucometers had more than 90 % of test results in Zone A and B. Bland-Altman analysis indicates that all glucometers show a positive bias, indicating that the measured values tend to be higher than the laboratory reference standard.