66 resultados para acceleration of particles
em Indian Institute of Science - Bangalore - Índia
Resumo:
Effect of sonochemical irradiation on the conversion of 2-alkoxytetrahydrofurans to γ-butyro-1actores by Jones reagent, and its extension to the highly stereoselective synthesis of quercus lactone a, is reported.
Resumo:
A total synthesis of the bioactive tetracyclic natural product acremine G has been achieved in which a regio- and stereoselective biomimetic Diels-Alder reaction between two readily assembled building blocks, accelerated on a solid support (silica gel), forms the key step. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Microwave irradiation, using a commercial microwave oven accelerates (in 10–15 min) the three-step ortho ester Claisen rearrangement of allyl and propynyl alcohols in dry DMF in open Erlenmeyer flasks.
Resumo:
The nanochemistry of calcium remains unexplored, which is largely due to the inaccessibility of calcium nanoparticles in an easy to handle form by conventional methods of synthesis as well as its highly reactive and pyrophoric nature. The synthesis of colloidal Ca nanoparticles by the solvated metal atom dispersion (SMAD) method is described. The as-prepared Ca-THF nanoparticles, which are polydisperse, undergo digestive ripening in the presence of a capping agent, hexadecyl amine (HDA) to afford highly monodisperse colloids consisting of 2-3 nm sized Ca-HDA nanoparticles. These are quite stable towards precipitation for long periods of time, thereby providing access to the study of the nanochemistry of Ca. Particles synthesized in this manner were characterized by UV-visible spectroscopy, high resolution electron microscopy, and powder X-ray diffraction methods. Under an electron beam, two adjacent Ca nanoparticles undergo coalescence to form a larger particle.
Resumo:
Experiments have shown strong effects of some substrates on the localized plasmons of metallic nano particles but they are inconclusive on the affecting parameters. Here, we have used discrete dipole approximation in conjunction with Sommerfeld integral relations to explain the effect of the substrates as a function of the parameters of incident radiation. The radiative coupling can both quench and enhance the resonance and its dependence on the angle and polarization of incident radiation with respect to the surface is shown. Non-radiative interaction with the substrate enhances the plasmon resonance of the particles and can shift the resonances from their free-space energies significantly. The non-radiative interaction of the substrate is sensitive to the shape of particles and polarization of incident radiation with respect to substrate. Our results show that the plasmon resonances in coupled and single particles can be significantly altered from their free-space resonances and are quenched or enhanced by the choice of substrate and polarization of incident radiation. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4736544]
Resumo:
A method for the preparation of acicular hydrogoethite (alpha -FeOOH.xH(2)O, 0.1 < x < 0.22) particles of 0.3-1 mm length has been optimized by air oxidation of Fe( II) hydroxide gel precipitated from aqueous (NH4)(2)Fe(SO4)(2) solutions containing 0.005-0.02 atom% of cationic Pt, Pd or Rh additives as morphology controlling agents. Hydrogoethite particles are evolved from the amorphous ferrous hydroxide gel by heterogeneous nucleation and growth. Preferential adsorption of additives on certain crystallographic planes thereby retarding the growth in the perpendicular direction, allows the particles to acquire acicular shapes with high aspect ratios of 8-15. Synthetic hydrogoethite showed a mass loss of about 14% at similar to 280 degreesC, revealing the presence of strongly coordinated water of hydration in the interior of the goethite crystallites. As evident from IR spectra, excess H2O molecules (0.1- 0.22 per formula unit) are located in the strands of channels formed in between the double ribbons of FeO6 octahedra running parallel to the c- axis. Hydrogoethite particles constituted of multicrystallites are formed with Pt as additive, whereas single crystallite particles are obtained with Pd (or Rh). For both dehydroxylation as well as H-2 reduction, a lower reaction temperature (similar to 220 degreesC) was observed for the former (Pt treated) compared to the latter (Pd or Rh) (similar to 260 degreesC). Acicular magnetite (Fe3O4) was prepared either by reducing hydrogoethite (magnetite route) or dehydroxylating hydrogoethite to hematite and then reducing it to magnetite (hematite- magnetite route). According to TEM studies, preferential dehydroxylation of hydrogoethite along < 010 > leads to microporous hematite. Maghemite (gamma -Fe2O3 (-) (delta), 0 <
Resumo:
We propose a method for the dynamic simulation of a collection of self-propelled particles in a viscous Newtonian fluid. We restrict attention to particles whose size and velocity are small enough that the fluid motion is in the creeping flow regime. We propose a simple model for a self-propelled particle, and extended the Stokesian Dynamics method to conduct dynamic simulations of a collection of such particles. In our description, each particle is treated as a sphere with an orientation vector p, whose locomotion is driven by the action of a force dipole Sp of constant magnitude S0 at a point slightly displaced from its centre. To simplify the calculation, we place the dipole at the centre of the particle, and introduce a virtual propulsion force Fp to effect propulsion. The magnitude F0 of this force is proportional to S0. The directions of Sp and Fp are determined by p. In isolation, a self-propelled particle moves at a constant velocity u0 p, with the speed u0 determined by S0. When it coexists with many such particles, its hydrodynamic interaction with the other particles alters its velocity and, more importantly, its orientation. As a result, the motion of the particle is chaotic. Our simulations are not restricted to low particle concentration, as we implement the full hydrodynamic interactions between the particles, but we restrict the motion of particles to two dimensions to reduce computation. We have studied the statistical properties of a suspension of self-propelled particles for a range of the particle concentration, quantified by the area fraction φa. We find several interesting features in the microstructure and statistics. We find that particles tend to swim in clusters wherein they are in close proximity. Consequently, incorporating the finite size of the particles and the near-field hydrodynamic interactions is of the essence. There is a continuous process of breakage and formation of the clusters. We find that the distributions of particle velocity at low and high φa are qualitatively different; it is close to the normal distribution at high φa, in agreement with experimental measurements. The motion of the particles is diffusive at long time, and the self-diffusivity decreases with increasing φa. The pair correlation function shows a large anisotropic build-up near contact, which decays rapidly with separation. There is also an anisotropic orientation correlation near contact, which decays more slowly with separation. Movies are available with the online version of the paper.
Resumo:
The effect of fluid velocity fluctuations on the dynamics of the particles in a turbulent gas–solid suspension is analysed in the low-Reynolds-number and high Stokes number limits, where the particle relaxation time is long compared with the correlation time for the fluid velocity fluctuations, and the drag force on the particles due to the fluid can be expressed by the modified Stokes law. The direct numerical simulation procedure is used for solving the Navier–Stokes equations for the fluid, the particles are modelled as hard spheres which undergo elastic collisions and a one-way coupling algorithm is used where the force exerted by the fluid on the particles is incorporated, but not the reverse force exerted by the particles on the fluid. The particle mean and root-mean-square (RMS) fluctuating velocities, as well as the probability distribution function for the particle velocity fluctuations and the distribution of acceleration of the particles in the central region of the Couette (where the velocity profile is linear and the RMS velocities are nearly constant), are examined. It is found that the distribution of particle velocities is very different from a Gaussian, especially in the spanwise and wall-normal directions. However, the distribution of the acceleration fluctuation on the particles is found to be close to a Gaussian, though the distribution is highly anisotropic and there is a correlation between the fluctuations in the flow and gradient directions. The non-Gaussian nature of the particle velocity fluctuations is found to be due to inter-particle collisions induced by the large particle velocity fluctuations in the flow direction. It is also found that the acceleration distribution on the particles is in very good agreement with the distribution that is calculated from the velocity fluctuations in the fluid, using the Stokes drag law, indicating that there is very little correlation between the fluid velocity fluctuations and the particle velocity fluctuations in the presence of one-way coupling. All of these results indicate that the effect of the turbulent fluid velocity fluctuations can be accurately represented by an anisotropic Gaussian white noise.
Resumo:
The stress states in Si particles of cast Al-Si based alloys depend on its morphology and the heat treatment given to the alloy. The Si particles fracture less on modification and fracture more in the heat treated condition. An attempt has been made in this work to study the effect of heat treatment and Si modification on the stress states of the particles. Such understanding will be valuable for predicting the ductility of the alloy. The stress states of Si particles are estimated by Raman technique and compared with the microstructure-based FEM simulations. Combination of Electron Back-Scattered Diffraction (EBSD) and frequency shift, polarized micro-Raman technique is applied to determine the stress states in Si particles with (111) orientations. Stress states are measured in the as-received state and under uniaxial compression. The residual stress, the stress in the elastic-plastic regime and the stress which causes fracture of the particles is estimated by Raman technique. FEM study demonstrates that the stress distribution is uniform in modified Si, whereas the unmodified Si shows higher and more complex stress states. The onset of plastic flow is observed at sharp corners of the particles and is followed by localization of strain between particles. Clustering of particles generates more inhomogeneous plastic strain in the matrix. Particle stress estimated by Raman technique is in agreement with FEM calculations. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We have investigated the impact of partially wetting particles of tens of micrometers on inversion instability of agitated liquid liquid dispersions. Particles of this size can be easily separated from the exit streams to avoid downstream processing-related issues. The results show that the presence of hydrophilic particles in small quantities (volume fraction range of 2 X 10(-4) to 1.25 x 10(-2)) significantly decreases the dispersed phase fraction at which water-in-oil (w/o) dispersions invert but leaves the inversion of oil-in-water (o/w) dispersions nearly unaffected. The addition of the same particles after they are hydrophobized decreases the dispersed phase fraction at which o/w dispersions invert but leaves the inversion of w/o dispersions unaffected. These findings suggest an increased rate of coalescence of drops when particles wet drops preferentially and a marginal decrease when they wet the continuous phase preferentially. High-speed conductivity measurements on w/o dispersion show transient conduction of a few hundred milliseconds duration through voltage pulses. Close to the inversion point, voltage pulses appear at high frequency for even 7 cm separation between the electrodes. The presence of hydrophilic particles produces a nearly identical signal at a significantly lower dispersed phase fraction itself, close to the new lowered inversion point in the presence of particles. We propose formation of elongated domains of the conducting dispersed phase through a rapid coalescence-deformation-breakup process to explain the new observations. The voltage signal appears as a forerunner of inversion instability.
Resumo:
We present measurements of the rheology of suspensions of rigid spheres in a semi-dilute polymer solution from experiments of steady and oscillatory shear. For a given value of the shear rate gamma, addition of particles enhances the viscosity and the first normal stress difference but decreases the magnitude of the second normal stress difference. The viscosity eta exhibits a power law variation in gamma for a range of gamma that grows with phi. The first normal stress N-1 is positive and its value grows with phi; it exhibits a clear power law variation for the entire range of gamma that was studied. The second normal stress difference N-2 is negative for the pure polymer solution and much smaller in magnitude than N-1; on addition of particles, its magnitude further decreases, and it appears to change sign at large phi. The behavior of N-1 and N-2 is at odds with the findings of recent studies on particle-loaded dilute polymer solutions and polymer melts. The small-amplitude oscillatory shear experiments show the linear viscoelastic properties, G(') and G('), increasing with phi at a given value of the angular frequency omega. The dynamic viscosity of the suspension differs substantially from its steady shear viscosity, and the difference increases as gamma, omega -> 0.
Resumo:
We find in complementary experiments and event-driven simulations of sheared inelastic hard spheres that the velocity autocorrelation function psi(t) decays much faster than t(-3/2) obtained for a fluid of elastic spheres at equilibrium. Particle displacements are measured in experiments inside a gravity-driven flow sheared by a rough wall. The average packing fraction obtained in the experiments is 0.59, and the packing fraction in the simulations is varied between 0.5 and 0.59. The motion is observed to be diffusive over long times except in experiments where there is layering of particles parallel to boundaries, and diffusion is inhibited between layers. Regardless, a rapid decay of psi(t) is observed, indicating that this is a feature of the sheared dissipative fluid, and is independent of the details of the relative particle arrangements. An important implication of our study is that the non-analytic contribution to the shear stress may not be present in a sheared inelastic fluid, leading to a wider range of applicability of kinetic theory approaches to dense granular matter.
Resumo:
Al-Li-SiCp composites were fabricated by a simple and cost effective stir casting technique. A compound billet technique has been developed to overcome the problems encountered during hot extrusion of these composites. After successful fabrication hardness measurement and room temperature compressive test were carried out on 8090 Al and its composites reinforced with 8, 12 and 18vol.% SiC particles in as extruded and peak aged conditions. The addition of SiC increases the hardness. 0.2% proof stress and compressive strength of Al-Li-8%SiC and Al-Li-12%SiC composites are higher than the unreinforced alloy. in case of the Al-Li-18%SiC composite, the 0.2% proof stress and compressive strength were higher than the unreinforced alloy but lower than those of Al-Li-8%SiC and Al-Li-12%SiC composites. This is attributed to clustering of particles and poor interfacial bonding.
Resumo:
Cast aluminium alloy-mica particle composites were made by dispersing mica particles in a vortex produced by stirring the liquid Al-4 wt% Cu-1.5 wt% Mg alloy and then casting the melt containing the suspended particles into permanent moulds. Spiral fluidity and casting fluidity of the alloy containing mica particles in suspension were determined. Both the spiral fluidity and the casting fluidity of the base alloy were found to decrease with an increase in volume or weight percent of mica particles (of a given size), and with a decrease in particle size (for a given amount of particles). The fluidities of Al-4 wt% Cu-1.5 wt% Mg alloys containing suspended mica particles were found to correlate very well with the surface area of suspended mica particles. The regression equation for spiral fluidity Y (cm) as a function of surface area of mica particles per gram of spiral X (cm2 g–1) at 700° C was found to be Y=42.62–0.42X with a correlation coefficient of 0.9634. The regression equations for casting fluidity Yprime (cm) as a functiono of surface area of mica particles per gram of fluidity test piece Xprime (cm2 g–1) at 710 and 670° C were found to be Yprime=19.71–0.17Xprime and Yprime=13.52–0.105Xprime with correlation coefficients of 0.9194 and 0.9612 respectively. The percentage decrease in casting fluidity of composite melts containing up to 2.5 wt% mica with a drop in temperature is quite similar to the corresponding decrease in the casting fluidity of base alloy melts (without mica). The change in fluidity due to mica dispersions has been discussed in terms of changes in viscosity of the composite melts. However, the fluidities of these composite alloys containing up to 2.5 wt% mica are adequate for making a variety of simple castings including bearings for which these alloys have been developed.