4 resultados para academic engagement
em Indian Institute of Science - Bangalore - Índia
Resumo:
Unambiguous evidence for the engagement of CF3 group in N-H center dot center dot center dot F-C hydrogen bond in a low polarity solvent, the first observation of its kind, is reported. The presence of such weak molecular interactions in the solution state is convincingly established by one and two-dimensional H-1, F-19, and natural abundant N-15 NMR spectroscopic studies. The strong and direct evidence is derived by the observation of through-space couplings, such as, (1h)J(FH), (1h)J(FN), and (2h)J(FF), where the spin polarization is transmitted through hydrogen bond. In an interesting example of a molecule containing two CF3 groups getting simultaneously involved in hydrogen bond, where hydrogen bond mediated couplings are not reflected in the NMR spectrum, F-19-F-19 NOESY experiment yielded confirmatory evidence. Significant deviations in the strengths of (1)J(NH), variable temperature, and the solvent induced perturbations yielded additional support. The NMR results are corroborated by both DFT calculations and MD simulations, where the quantitative information on different ways of involvement of fluorine in two and three centered hydrogen bonds, their percentage of occurrences, and geometries have been obtained. The hydrogen bond interaction energies have also been calculated.
Capturability of augmented proportional navigation (APN) guidance with nonlinear engagement dynamics
Resumo:
Proportional Navigation (PN) and its variants are widely used guidance philosophies. However, in the presence of target maneuver, PN guidance law is effective only for a restrictive set of initial geometries. To account for target maneuvers, the concept of Augmented Proportional Navigation (APN) guidance law was introduced and analyzed in a linearized interceptor-target engagement framework presented in literature. However, there is no work in the literature, that addresses the capturability performance of the APN guidance law in a nonlinear engagement framework. This paper presents such an analysis and obtains the conditions for capturability. It also shows that a shorter time of interception is obtained when APN is formulated in the nonlinear framework as proposed in this paper. Simulation results are given to support the theoretical findings.
Resumo:
Impact angle constrained guidance laws are important in many applications such as guidance of torpedoes, anti-ballistic missiles and reentry vehicles. In this paper, we design a guidance law which is capable of achieving a wide range of impact angles. Biased proportional navigation guidance uses a bias term in addition to the basic PN command to satisfy additional constraints. Angle constrained BPNG (ACBPNG) uses small angle approximations to derive the bias term for impact angle requirement. We design a modified ACBPNG (MACBPNG) where the required bias term is derived in a closed form considering non-linear equations of motion. Simulations are carried out for a wide range of impact angle requirements. We also analyze capturability from different initial positions and also the launch angles possible at each initial position. The performance of the proposed law is compared with an existing law.