3 resultados para aboveground

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study follows an approach to estimate phytomass using recent techniques of remote sensing and digital photogrammetry. It involved tree inventory of forest plantations in Bhakra forest range of Nainital district. Panchromatic stereo dataset of Cartosat-1 was evaluated for mean stand height retrieval. Texture analysis and tree-tops detection analyses were done on Quick-Bird PAN data. The composite texture image of mean, variance and contrast with a 5x5 pixel window was found best to separate tree crowns for assessment of crown areas. Tree tops count obtained by local maxima filtering was found to be 83.4 % efficient with an RMSE+/-13 for 35 sample plots. The predicted phytomass ranged from 27.01 to 35.08 t/ha in the case of Eucalyptus sp. while in the case of Tectona grandis from 26.52 to 156 t/ha. The correlation between observed and predicted phytomass in Eucalyptus sp. was 0.468 with an RMSE of 5.12. However, the phytomass predicted in Tectona grandis was fairly strong with R-2=0.65 and RMSE of 9.89 as there was no undergrowth and the crowns were clearly visible. Results of the study show the potential of Cartosat-1 derived DSM and Quick-Bird texture image for the estimation of stand height, stem diameter, tree count and phytomass of important timber species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the potential for increasing the tree cover and thereby the biomass and carbon as a mitigation option of three categories of wastelands, irrespective of their tenure, are considered. The area under wastelands in Himachal Pradesh, according to NRSA (2005), is estimated to be 2.83 Mha. Among the 28 categories of wastelands reported by NRSA, only 15 categories exist in Himachal Pradesh. In the present study, three land categories are considered for estimating the mitigation potential. They include: (i) Degraded forestland, (ii) Degraded community land and (iii) Degraded and abandoned private land. Choice of species or the mix of species to be planted on the three land categories considered for reforestation is discussed. Carbon pools considered in the present study are those, which account only for aboveground biomass, belowground biomass and soil organic carbon. This study estimates the mitigation potential at the state level considering land available under more than one category. It also provides a roadmap for future work in support of mitigation analysis and implementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mgha(-1)) at spatial scales ranging from 5 to 250m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial ``dilution'' bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.