23 resultados para Zircon geochronology

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work is aimed at evaluating an alternative moulding system, namely, sodium aluminate bonded zircon sand mould and assess its suitability in relation to the much studied sodium silicate bonded zircon sand moulding system. It is described in the study presented here that with regard to metal - mould reaction, sodium aluminate bonded zircon sand mould system is a superior viable system as compared to sodium silicate bonded zircon moulding system at mould firing temperatures of 873 - 1473 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naturally occurring zircon sand was plasma spray coated on steel substrates previously coated with NiCrAlY bond coat. The coatings were characterized for their microstructure, chemical composition, thermal shock resistance, and the nature of structural phases present, The as-sprayed coatings consisted of t-ZrO2 (major phase), m-ZrO2, ZrSiO4 (minor phases), and amorphous SiO2. These coatings, when annealed at 1200 degrees C/1.44 x 10(4) s yielded a ZrSiO4 phase as a result of the reaction between ZrO2 and SiO2, Dramatic changes occurred in the characteristics of the coatings when a mixture of zircon sand and Y2O3 was plasma spray coated and annealed at 1400 degrees C/1.44 x 10(4) s, The t-ZrO2 phase was completely stabilized, and these coatings were found to have considerable potential for thermal barrier applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-mold reaction during Ti casting in zircon sand molds has been studied using scanning electron microscope, energy and wave length dispersive analysis of X-rays, X-ray diffraction, microhardness measurements, and chemical analysis. Experimental results suggest that oxides from the mold are not fully leached out by liquid Ti, but oxygen is preferentially transferred to liquid Ti, leaving behind metallic constituents in the mold as lower oxides or intermetallics of Ti. The electron microprobe analysis has revealed the depth profile of contaminants from the mold into the cast Ti metal. The elements Si, Zr and O were found to have diffused to a considerable distance within the Ti metals. A possible mechanism has now been evolved in regard to the reactions that occur during casting of Ti in zircon sand molds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experimental observations of casting titanium in sodium silicate bonded zircon sand mould are presented in this paper. Metal-mould reactions, in general, involved dissolution of oxides in liquid titanium resulting in contamination of the casting. Minimal metal-mould reactions occurred when titanium was cast in zircon sand mould containing about 7.5 wt% of ZrO2. It has been further shown that the metal-mould reaction is considerably reduced if moulds were fired at high temperatures (> 1273K). This ensured elimination of moisture from the mould and also resulted in some beneficial changes in the mould chemistry. The reduction in metal-mould reaction is reflected in the decrease in oxygen and hydrogen contamination and decrease in hardness. Thus microhardness profile and oxygen analysis seems to provide a good index for evaluation of severity of metal-mould reaction. The method has been demonstrated to be satisfactory for casting titanium components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zircon has been recognized as the unaltered part of the Earth's history which preserves nearly 4 billion year record of earth's evolution. Zircon preserves igneous and metamorphic processes during its formation and remains unaffected by sedimentary processes and crustal recycling. U-Pb and Lu-Hf in zircon work as geochronometer and geochemical tracer respectively. Zircon provide valuable information about the source composition of the rocks and the intrinsic details of an unseen crust-mantle processes. The world wide data of U-Pb and Lu-Hf isotope systems in zircon reveal crustal evolution through geological history. Moreover, the U-Pb age pattern of zircons show distinct peaks attributed to preservation of crustal rocks or mountain building during supercontinent assembly. The histogram of continental crust preservation shows that nearly one-third of continental crust was formed during the Archean, almost 20% was formed during Paleoproterozoic and 14% in last 400 Ma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migmatised metapelites from the Kodaikanal region, central Madurai Block, southern India have undergone ultrahigh-temperature metamorphism (950-1000 degrees C; 7-8 kbar). In-situ electron microprobe Th-U-Pb isochron (CHIME) dating of monazites in a leucosome and surrounding silica-saturated and silica-poor restites from the same outcrop indicates three principal ages that can be linked to the evolutionary history of these rocks. Monazite grains from the silica-saturated restite have well-defined, inherited cores with thick rims that yield an age of ca. 1684 Ma. This either dates the metamorphism of the original metapelite or is a detrital age of inherited monazite. Monazite grains from the silica-poor restite, thick rims from the silica-saturated restite, and monazite cores from the leucosome have ages ranging from 520 to 540 Ma suggesting a mean age of 530 Ma within the error bars. In the leucosome the altered rim of the monazite gives an age of ca. 502 Ma. Alteration takes the form of Th-depleted lobes of monazite with sharp curvilinear boundaries extending from the monazite grain rim into the core. We have replicated experimentally these altered rims in a monazite-leucosome experiment at 800 degrees C and 2 kbar. This experiment, coupled with earlier published monazite-fluid experiments involving high pH alkali-bearing fluids at high P-T, helps to confirm the idea that alkali-bearing fluids, in the melt and along grain boundaries during crystallization, were responsible for the formation of the altered monazite grain rims via the process of coupled dissolution-reprecipitation. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Southern Granulite Terrain in India is a collage of crustal blocks ranging in age from Archean to Neoproterozoic. This study investigate the tectonic evolution of one of the northernmost block- the Biligiri Block (BRB) through a multidisciplinary approach involving field investigation, petrographic studies, LA-ICPMS zircon U-Pb geochronology, Hf isotopic analyses, metamorphic P-T phase diagram computations, and crustal thickness modeling. The garnet bearing quartzofeldspathic gneiss from the central BRB preserve Mesoarchean magmatic zircons with ages between 3207 and 2806 Ma and positive epsilon Hf value (+2.7) which possibly indicates vestiges of a Mesoarchean primitive continental crust. The occurrence of quartzite-iron formation intercalation as well as ultramafic lenses along the western boundary of the BRB is interpreted to indicate that the Kollegal structural lineament is a possible paleo-suture. Phase diagram computation of a metagabbro from the southwestern periphery of the Kollegal suture zone reveals high-pressure (similar to 18.5 kbar) and medium-temperature (similar to 840 degrees C) metamorphism, likely during eastward subduction of the Western Dharwar oceanic crust beneath the Mesoarchean BRB. In the model presented here, slab subduction, melting and underplating processes generated arc magmatism and subsequent charnockitization within the BRB between ca. 2650 Ma and ca. 2498 Ma. These results thus reveal Meso- to Neoarchean tectonic evolution of the BRB. The spatial variation of crustal thickness, derived from flexure inversion technique, provides additional constraints on the tectonic linkage of the BRB with its surrounding terrains. In conjunction with published data, the Moyar and the Kollegal suture zones are considered to mark the trace of ocean closure along which the Nilgiri and Biligiri Rangan Blocks accreted on to the Western Dharwar Craton. (C) 2016 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-stoichiometric substituted cerium vanadates, MxCe1-xVO4 (M = Li, Ca and Fe), were synthesized by solid-state reactions. The crystal structure was analyzed by powder X-ray diffraction and it exhibits a tetragonal zircon Structure, crystallizing in the space group I4(1)/amd with a = 7.3733(4) and c = 6.4909(4) angstrom and Z = 4. Particle sizes were in the range of 600-800 nm, as observed by scanning electron microscopy. The thermal analysis of the compounds showed phase stability up to 1100 degrees C. The UV diffuse reflectance spectra indicated that the compounds have band gaps in the range of 2.6-2.9 eV. The photocatalytic activity of these Compounds was investigated for the first time for the degradation of different dyes, and organics, the oxidation of cyclohexane and the hydroxylation of benzene. The degradation of dyes was modeled using the Langmuir-Hinshelwood kinetics, while the oxidation of cyclohexane and hydroxylation of benzene were modeled using a free radical mechanism and a series reaction mechanism, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coefficients of thermal expansion reported by Worlton et al. [6] in the case of zircon are given in Table II along with the present data. Although Oql > or• in both cases, the anisotropy is more marked in the case of DyV04. From Table II, it is clear that the coefficient of volume expansion (,6) is almost the same for both compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fe-substituted CeVO4 was synthesized by the solution combustion technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis spectroscopy, transmission electron microscopy and BET surface area analyzer. These compounds crystallized in tetragonal zircon structure with Fe substituted in ionic state for Ce3+ ions. The degradation of anionic and cationic dyes was studied over Fe-substituted CeVO4 compounds. The compounds showed high photocatalytic activity towards dye degradation. The effect of amount of substitution was studied by varying the Fe substitution from 1 to 10%. The rates decreased with increasing substitution of Fe in CeVO4 and 1% Fe substituted CeVO4 showed the highest photocatalytic activity. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrahigh-temperature (UHT) granulites of the central Highland Complex, Sri Lanka, underwent some of the highest known peak temperatures of crustal metamorphism. Zircon and monazite U-Pb systems in granulites near Kandy, the highest grade region (similar to 1050 degrees C; 0.9 GPa), preserve both a record of the timing of prograde and retrograde phases of UHT metamorphism and evidence for the ages of older protolith components. Zircon grains from a quartz-saturated granulite containing relics of the peak UHT assemblage have remnant detrital cores with dates of ca. 2.5-0.83 Ga. Date clusters of ca. 1.7 and 1.04-0.83 Ga record episodes of zircon growth in the source region of the protolith sediment. Two generations of overgrowths with contrasting Th/U record metamorphic zircon growth at 569 +/- 5 and 551 +/- 7 Ma, probably in the absence and presence of monazite, respectively. The age of coexisting metamorphic monazite (547 +/- 7 Ma) is indistinguishable from that of the younger, low-Th/U zircon overgrowths. Zircon from a quartz-undersaturated monazite-absent UHT granulite with a mainly retrograde assemblage is mostly metamorphic (551 +/- 5 Ma). The ca. 570 Ma zircon overgrowths in the quartz-saturated granulite probably record partial melting just before or at the metamorphic peak. The ca. 550 Ma zircon in both rocks, and the ca. 550 Ma monazite in the quartz-saturated sample, record post-peak isothermal decompression. A possible model for this pressure-temperature-time evolution is ultrahot collisional orogeny during the assembly of Gondwana, locally superheated by basaltic underplating, followed by fast extensional exhumation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zirconia-based solid electrolytes with zircon (ZrSiO4) as the auxiliary electrode have been suggested of sensing silicon concentrations in iron and steel melts. A knowledge of phase relations in the ternary system MO-SiO2-ZrO2 (M = Ca, Mg) is useful for selecting an appropriate auxiliary electrode. In this investigation, an isothermal section for the phase diagram of the system CaO-SiO2ZrO2 at 1573 K has been established by equilibrating mixtures of component oxides in air, followed by quenching and phase identification by optical miroscopy, energy disperse analysis of X-rays (EDAX) and X-ray diffraction analysis (XRD). The equilibrium phase relations have also been confirmed by computation using the available thermodynamic data on condensed phases in the system. The results indicate that zircon is not in thermodynamic equilibrium with calcia-stabilized zirconia or calcium zirconate. The silica containing phase in equilibrium with stabilized zirconia is Ca3ZrSi2O9. Calcium zirconate can coexist with Ca3ZrSi2O9 and Ca2SiO4.