388 resultados para Yb^3

em Indian Institute of Science - Bangalore - Índia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We apply our technique of using a Rb-stabilized ring-cavity resonator to measure the frequencies of various spectral components in the 555.8-nm 1S0-->3P1 line of Yb. We determine the isotope shifts with 60 kHz precision, which is an order-of-magnitude improvement over the best previous measurement on this line. There are two overlapping transitions, 171Yb(1/2-->3/2) and 173Yb(5/2-->3/2), which we resolve by applying a magnetic field. We thus obtain the hyperfine constants in the 3P1 state of the odd isotopes with a significantly improved precision. Knowledge of isotope shifts and hyperfine structure should prove useful for high-precision calculations in Yb necessary to interpret ongoing experiments testing parity and time-reversal symmetry violation in the laws of physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report magnetic trapping of Yb in the excited P-3(2) state. This state, with a lifetime of 15 s, could play an important role in studies ranging from optical clocks and quantum computation to the search for a permanent electric dipole moment. Yb atoms are first cooled and trapped in the ground state in a 399-nm magneto-optic trap. The cold atoms are then pumped into the excited state by driving the S-1(0) -> P-3(1) -> S-3(1) transition. Atoms in the P-3(2) state are magnetically trapped in a spherical quadrupole field with an axial gradient of 110 G/cm. We trap up to 10(6) atoms with a lifetime of 1.5 s.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We measure hyperfine structure in the metastable P-3(2) state of Yb-173 and extract the nuclear magnetic octupole moment. We populate the state using dipole-allowed transitions through the P-3(1) and S-3(1) states. We measure frequencies of hyperfine transitions of the P-3(2) -> S-3(1) line at 770 nm using a Rb-stabilized ring cavity resonator with a precision of 200 kHz. Second-order corrections due to perturbations from the nearby P-3(1) and P-1(1) states are below 30 kHz. We obtain the hyperfine coefficients as A = -742.11(2) MHz and B = 1339.2(2) MHz, which represent a two orders-of-magnitude improvement in precision, and C = 0.54(2) MHz. From atomic structure calculations, we obtain the nuclear moments quadrupole Q = 2.46(12) b and octupole Omega = -34.4(21) b x mu(N). DOI: 10.1103/PhysRevA.87.012512

Relevância:

30.00% 30.00%

Publicador:

Resumo:

He II photoelectron spectra of La, Ce and Yb show features which cannot be explained in terms of single electron excitations. It is proposed that these are due to formation of electron-hole paris.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infrared spectra of 1,3-dithiole-2-thione (DTT) and its four selenium analogues have been studied in the region 4000 to 20 cm�1. Assignment of all the fundamental frequencies was made by noting the band shifts on progressive selenation. Normal coordinate analysis procedures have been applied for both in-plane and out-of-plane vibrations to help the assignments. The Urey�Bradley force function supplemented with valence force constants for the out-of-plane vibrations was employed for coordinate calculations. A correlation of the infrared assignments of DTT with its different selenium analogues is accomplished. Further, the infrared assignments are compared with those of trithiocarbonate ion and its selenium analogues and other structurally related heterocyclic molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The valence state of Yb in some of its intermetallics, YbNi2Ge2, YbCu2Si2 and YbPd2Si2 has been investigated by LIII(Yb) absorption edges and X-ray pnotoelectron spectra in the 4f and 4d regions. These studies establish the presence of mixed valence in all three systems and illustrate the utility of 4f and 4d spectra in the study of mixed valence in Yb compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase diagrams for Tm2O3-H2O-CO2. Yb2O3-H2O-CO2 and Lu2O3-H2O-CO2 systems at 650 and 1300 bars have been investigated in the temperature range of 100â800°C. The phase diagrams are far more complex than those for the lighter lanthanides. The stable phases are Ln(OH)3, Ln2(CO3)3.3H2O (tengerite phase), orthorhombic-LnOHCO3, hexagonal-Ln2O2CO3. LnOOH and cubic-Ln2O3. Ln(OH)3 is stable only at very low partial pressures of CO2. Additional phases stabilised are Ln2O(OH)2CO3and Ln6(OH)4(CO3)7 which are absent in lighter lanthanide systems. Other phases, isolated in the presence of minor alkali impurities, are Ln6O2(OH)8(CO3)3. Ln4(OH)6(CO3)3 and Ln12O7(OH)10,(CO3)6. The chemical equilibria prevailing in these hydrothermal systems may be best explained on the basis of the four-fold classification of lanthanides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complexes of lanthanide iodides with 3-methylpyridine-1-oxide of the formula Ln(3-MePyO)8I3.xH2O where x = 0 for Ln = La and Tb, x = 1 for Ln = Pr, and x = 2 for Ln = Nd, Sm, Dy, Yb, and Y have been prepared and characterized by chemical analyses, conductance, infrared, proton nmr, and DTA data. Infrared and proton nmr data have been interpreted in terms of the coordination of the ligand to the metal ion through the oxygen of the NâO group. Proton nmr spectrum of the Yb(III) complex is indicative of a restricted rotation of the pyridine ring about the NâO bond.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

3-Picoline-N-oxide (3-PicNO) complexes of rare-earth bromides of the formulaMBr3(3-PicNO)8ân·nH2O wheren=0 forM=La, Pr, Nd, Sm Tb or Y andn=2 forM=Ho or Yb have been prepared. Infrared and proton NMR studies indicate that the coordination of the ligand is through oxygen. Conductance data in acetonitrile suggest that two bromide ions are coordinated to the metal ion. Proton NMR studies suggest a bicapped dodecahedral arrangement of the ligands around the metal ion in solution for Pr(III), Nd(III) and Tb(III) complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report formation of new noncentrosymmetric oxides of the formula, R3Mn1.5CuV0.5O9 for R = Y, Ho, Er, Tm, Yb and Lu, possessing the hexagonal RMnO3 (space group P6(3)cm) structure. These oxides could be regarded as the x = 0.5 members of a general series R3Mn3-3xCu2xVxO9. Investigation of the Lu-Mn-Cu-V-O system reveals the existence of isostructural solid solution series, Lu3Mn3-3xCu2xVxO9 for 0 < x <= 0.75. Magnetic and dielectric properties of the oxides are consistent with a random distribution of Mn3+, Cu2+ and V5+ atoms that preserve the noncentrosymmetric RMnO3 structure. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the rare-earth transition-metal oxide series, Ln(2)CuTiO(6) (Ln = Y, Dy, Ho, Er, and Yb), crystallizing in the hexagonal structure with noncentrosymmetric P6(3)cm space group for possible occurrences of multiferroic properties. Our results show that while these compounds, except Ln = Y, exhibit a low-temperature antiferromagnetic transition due to the ordering of the rare-earth moments, the expected ferroelectric transition is frustrated by the large size difference between Cu and Ti at the B site. Interestingly, this leads these compounds to attain a rare and unique combination of desirable paraelectric properties with high dielectric constants, low losses, and weak temperature and frequency dependencies. First-principles calculations establish these exceptional properties result from a combination of two effects. A significant difference in the MO5 polyhedral sizes for M = Cu and M = Ti suppress the expected cooperative tilt pattern of these polyhedra, required for the ferroelectric transition, leading to relatively large values of the dielectric constant for every compound investigated in this series. Additionally, it is shown that the majority contribution to the dielectric constant arises from intermediate-frequency polar vibrational modes, making it relatively stable against any temperature variation. Changes in the temperature stability of the dielectric constant among different members of this series are shown to arise from changes in relative contributions from soft polar modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate launching of laser-cooled Yb atoms in a cold atomic fountain. Atoms in a collimated thermal beam are first cooled and captured in a magneto-optical trap (MOT) operating on the strongly allowed S-1(0) -> P-1(1) transition at 399 nm (blue line). They are then transferred to a MOT on the weakly allowed S-1(0) -> P-3(1) transition at 556 nm (green line). Cold atoms from the green MOT are launched against gravity at a velocity of around 2.5 m/s using a pair of green beams. We trap more than 107 atoms in the blue MOT and transfer up to 70% into the green MOT. The temperature for the odd isotope Yb-171 is similar to 1 mK in the blue MOT, and reduces by a factor of 40 in the green MOT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wet chemical route is developed for the preparation of Sr2CeO4 denoted the carbonate-gel composite technique. This involves the coprecipitation of strontium as fine particles of carbonates within hydrated gels of ceria (CeO2.xH(2)O, 40<x<75) by the addition of ammonium carbonate. During calcination, CeO2.xH(2)O dehydroxylation is followed by the reaction with SrCO3 to form Sr2CeO4 with complete phase purity. Doping of other rare-earths is carried out at the co-precipitation stage. The photoluminescence (PL) observed for Sr2CeO4 originates from the Ce4+-O2- charge-transfer (CT) transition resulting from the interaction of Ce4+ ion with the neighboring oxide ions. The effect of next-nearest-neighbor (NNN) environment on the Ce4+-O2- CT emission is studied by doping with Eu3+, Sm3+ or Yb3+ which in turn, have unique charge-transfer associated energy levels in the excited states in oxides. Efficient energy transfer occurs from Ce4+-O2- CT state to trivalent lanthanide ions (Ln(3+)) if the latter has CT excited states, leading to sensitizer-activator relation, through non-resonance process involving exchange interaction. Yb3+-substituted Sr2CeO4 does not show any line emission because the energy of Yb3+-O2- CT level is higher than that of the Ce4+-O2- CT level. Sr2-xEuxCeO4+x/2 shows white emission at xless than or equal to0.02 because of the dominant intensities of D-5(2)-F-7(0-3) transitions in blue-green region whereas the intensities of D-5(0)-F-7(0-3) transitions in orange-red regions dominate at concentrations xgreater than or equal to0.03 and give red emission. The appearance of all the emissions from D-5(2), D-5(1) and D-5(0) excited states to the F-7(0-3) ground multiplets of Eu3+ is explained on the basis of the shift from the hypersensitive electric-dipole to magnetic-dipole related transitions with the variation in site symmetry with increasing concentration of Eu3+. White emission of Sr2-x SmxCeO4+x/2 at xless than or equal to0.02 is due the co-existence of Ce4+-O2- CT emission and (4)G(4)(5/2)-H-6(J) Sm3+ transitions whereas only the Sm3+ red emission prevails for xgreater than or equal to0.03. The above unique changes in PL emission features are explained in terms of the changes in NNN environments of Ce4+. Quenching of Ce4+-O2- CT emission by other Ln(3+) is due to the ground state crossover arising out of the NNN interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hexagonal Ln(2)CuTiO(6) (Ln = Y, Dy, Ho, Er, and Yb) exhibits a rare combination of interesting dielectric properties, in the form of relatively large dielectric constants (epsilon' > 30), low losses, and extremely small temperature and frequency dependencies, over large ranges of temperature and frequency Choudhury et al., Appl. Phys. Lett. 96, 162903 (2010) and Choudhury et al., Phys. Rev. B 82, 134203 (2010)], making these compounds promising as high-k dielectric materials. The authors present a brief review of the existing literature on this interesting class of oxides, complimenting it with spectroscopic data in conjunction with first-principles calculation results, revealing a novel mechanism underlying these robust dielectric properties. These show that the large size differences in Cu2+ and Ti4+ at the B-site, aided by an inherent random distribution of CuO5 and TiO5 polyhedral units, frustrates the ferroelectric instability, inherent to the noncentrosymmetric P6(3) cm space group of this system, and gives rise to the observed relatively large dielectric constant values. Additionally, the phononic contributions to the dielectric constant are dominated primarily by mid-frequency (>100 cm(-1)) polar modes, involving mainly Ti4+ 3d(0) ions. In contrast, the soft polar phonon modes with frequencies typically less than 100 cm(-1), usually responsible for dielectric properties of materials, are found to be associated with non-d(0) Cu2+ ions and to contribute very little, giving rise to the remarkable temperature stability of dielectric properties of these compounds. (C) 2014 American Vacuum Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman slower. They are then subjected to a pair of molasses beams inclined at 45(a similar to) with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate the selective deflection of the bosonic isotope Yb-174 and the fermionic isotope Yb-171. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.