5 resultados para YÁNEZ COSSÍO, ALICIA, 1929-

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The LISA Parameter Estimation Taskforce was formed in September 2007 to provide the LISA Project with vetted codes, source distribution models and results related to parameter estimation. The Taskforce's goal is to be able to quickly calculate the impact of any mission design changes on LISA's science capabilities, based on reasonable estimates of the distribution of astrophysical sources in the universe. This paper describes our Taskforce's work on massive black-hole binaries (MBHBs). Given present uncertainties in the formation history of MBHBs, we adopt four different population models, based on (i) whether the initial black-hole seeds are small or large and (ii) whether accretion is efficient or inefficient at spinning up the holes. We compare four largely independent codes for calculating LISA's parameter-estimation capabilities. All codes are based on the Fisher-matrix approximation, but in the past they used somewhat different signal models, source parametrizations and noise curves. We show that once these differences are removed, the four codes give results in extremely close agreement with each other. Using a code that includes both spin precession and higher harmonics in the gravitational-wave signal, we carry out Monte Carlo simulations and determine the number of events that can be detected and accurately localized in our four population models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amorphous aluminosilicate gel powders have been subjected to carbothermal reduction and nitridation reaction at high temperature (1673 K). The influence of Al2O3 content in the gel powder on the nature and structure of the product phases has been examined. Between 5% and 9% Al2O3 in the gel powder, it is found that only β-SiAION is formed as the product of CTR/N reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Niobium-based alloys are well-established refractory materials; as a result of their high melting temperature and good creep properties, these alloys find their applications in nuclear reactors. The present study deals with a microstructural response of these materials during hot working. The evolution of microstructure and texture during high-temperature deformation has been investigated in the temperature range 1500-1700A degrees C and strain rate range of 0.001-0.1 s(-1). For each deformed sample, the microstructure has been examined in detail. The microstructural features clearly revealed the formation of a substructure and the occurrence of dynamic recrystallization in a proper temperature-strain rate window. At low strain rates, the necklace structure formation was more prominent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computational models based on the phase-field method typically operate on a mesoscopic length scale and resolve structural changes of the material and furthermore provide valuable information about microstructure and mechanical property relations. An accurate calculation of the stresses and mechanical energy at the transition region is therefore indispensable. We derive a quantitative phase-field elasticity model based on force balance and Hadamard jump conditions at the interface. Comparing the simulated stress profiles calculated with Voigt/Taylor (Annalen der Physik 274(12):573, 1889), Reuss/Sachs (Z Angew Math Mech 9:49, 1929) and the proposed model with the theoretically predicted stress fields in a plate with a round inclusion under hydrostatic tension, we show the quantitative characteristics of the model. In order to validate the elastic contribution to the driving force for phase transition, we demonstrate the absence of excess energy, calculated by Durga et al. (Model Simul Mater Sci Eng 21(5):055018, 2013), in a one-dimensional equilibrium condition of serial and parallel material chains. To validate the driving force for systems with curved transition regions, we relate simulations to the Gibbs-Thompson equilibrium condition

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed an integrated database for Mycobacterium tuberculosis H37Rv (Mtb) that collates information on protein sequences, domain assignments, functional annotation and 3D structural information along with protein-protein and protein-small molecule interactions. SInCRe (Structural Interactome Computational Resource) is developed out of CamBan (Cambridge and Bangalore) collaboration. The motivation for development of this database is to provide an integrated platform to allow easily access and interpretation of data and results obtained by all the groups in CamBan in the field of Mtb informatics. In-house algorithms and databases developed independently by various academic groups in CamBan are used to generate Mtb-specific datasets and are integrated in this database to provide a structural dimension to studies on tuberculosis. The SInCRe database readily provides information on identification of functional domains, genome-scale modelling of structures of Mtb proteins and characterization of the small-molecule binding sites within Mtb. The resource also provides structure-based function annotation, information on small-molecule binders including FDA (Food and Drug Administration)-approved drugs, protein-protein interactions (PPIs) and natural compounds that bind to pathogen proteins potentially and result in weakening or elimination of host-pathogen protein-protein interactions. Together they provide prerequisites for identification of off-target binding.