2 resultados para Xen
em Indian Institute of Science - Bangalore - Índia
Resumo:
The prevalent virtualization technologies provide QoS support within the software layers of the virtual machine monitor(VMM) or the operating system of the virtual machine(VM). The QoS features are mostly provided as extensions to the existing software used for accessing the I/O device because of which the applications sharing the I/O device experience loss of performance due to crosstalk effects or usable bandwidth. In this paper we examine the NIC sharing effects across VMs on a Xen virtualized server and present an alternate paradigm that improves the shared bandwidth and reduces the crosstalk effect on the VMs. We implement the proposed hardwaresoftware changes in a layered queuing network (LQN) model and use simulation techniques to evaluate the architecture. We find that simple changes in the device architecture and associated system software lead to application throughput improvement of up to 60%. The architecture also enables finer QoS controls at device level and increases the scalability of device sharing across multiple virtual machines. We find that the performance improvement derived using LQN model is comparable to that reported by similar but real implementations.
Resumo:
Realization of cloud computing has been possible due to availability of virtualization technologies on commodity platforms. Measuring resource usage on the virtualized servers is difficult because of the fact that the performance counters used for resource accounting are not virtualized. Hence, many of the prevalent virtualization technologies like Xen, VMware, KVM etc., use host specific CPU usage monitoring, which is coarse grained. In this paper, we present a performance monitoring tool for KVM based virtualized machines, which measures the CPU overhead incurred by the hypervisor on behalf of the virtual machine along-with the CPU usage of virtual machine itself. This fine-grained resource usage information, provided by the above tool, can be used for diverse situations like resource provisioning to support performance associated QoS requirements, identification of bottlenecks during VM placements, resource profiling of applications in cloud environments, etc. We demonstrate a use case of this tool by measuring the performance of web-servers hosted on a KVM based virtualized server.