4 resultados para Winter storms

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents the importance of the Nocturnal Boundary Layer in driving the diurnal variability of the atmospheric CO2 mixing ratio and the carbon isotope ratio at ground level from an urban station in India. Our observations are the first of their kind from this region. The atmospheric CO2 mixing ratio and the carbon isotopic ratio were measured for both the morning (05:30-07:30 IST) and afternoon time (16:00-18:00 IST) air samples at 5 m above ground level in Bangalore city, Karnataka State (12 degrees 58' N, 77 degrees 38' E, masl = 920 m) for a 10 day period during the winter of 2008. We observed a change of similar to 7% the in CO2 mixing ratio between the morning and afternoon time air samples. A stable isotope analysis of CO2 from morning samples showed a depletion in the carbon isotope ratio by similar to 2 parts per thousand compared to the afternoon samples. Along with the ground-based measurement of air samples, data of radiosonde measurements were also obtained from the Indian Meteorological Department to identify the vertical atmospheric structure at different time in a day. We proposed the presence or absence of the NBL as a controlling factor for the observed variability in the mixing ratio as well as its isotopic composition. Here we used the Keeling model approach to find out the carbon isotope ratio for the local sources. The local sources have further been characterized as anthropogenic and biological respiration (in %) using a two-component mixing model. We also used a vertical mixing model based on the concept of the mixing of isotopically depleted (carbon isotope) ``polluted air'' (PA) with isotopically enriched ``free atmospheric air'' (FA) above. Using this modeling approach, the contribution of FA at ground level is being estimated for both the morning and afternoon time air samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The swirling colors of aurorae, familiar to many in polar communities, can occasionally be seen at middle latitudes in locations such as southern Canada and central Europe. But in rare instances, aurorae can even be seen in the tropics. On 6 February 1872, news of the sighting of one such aurora was carried by the Times of India newspaper. The aurora occurred on 4 February 1872 and, as noted, was also observed over the Middle East.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, an effort has been made to study heavy rainfall events during cyclonic storms over Indian Ocean. This estimate is based on microwave observations from tropical rainfall measuring mission (TRMM) Microwave Imager (TMI). Regional scattering index (SI) developed for Indian region based on measurements at 19-, 21- and 85-GHz brightness temperature and polarization corrected temperature (PCT) at 85 GHz have been utilized in this study. These PCT and SI are collocated against Precipitation Radar (PR) onboard TRMM to establish a relationship between rainfall rate, PCT and SI. The retrieval technique using both linear and nonlinear regressions has been developed utilizing SI, PCT and the combination of SI and PCT. The results have been compared with the observations from PR. It was found that a nonlinear algorithm using combination of SI and PCT is more accurate than linear algorithm or nonlinear algorithm using either SI or PCT. Statistical comparison with PR exhibits the correlation coefficients (CC) of 0.68, 0.66 and 0.70, and root mean square error (RMSE) of 1.78, 1.96 and 1.68 mm/h from the observations of SI, PCT and combination of SI and PCT respectively using linear regressions. When nonlinear regression is used, the CC of 0.73, 0.71, 0.79 and RMSE of 1.64, 1.95, 1.54 mm/h are observed from the observations of SI, PCT and combination of SI and PCT, respectively. The error statistics for high rain events (above 10 mm/h) shows the CC of 0.58, 0.59, 0.60 and RMSE of 5.07, 5.47, 5.03 mm/h from the observations of SI, PCT and combination of SI and PCT, respectively, using linear regression, and on the other hand, use of nonlinear regression yields the CC of 0.66, 0.64, 0.71 and RMSE of 4.68, 5.78 and 4.02 mm/h from the observations of SI, PCT and combined SI and PCT, respectively.