8 resultados para Wilson, John, 1785-1854.
em Indian Institute of Science - Bangalore - Índia
Resumo:
We present results for the QCD spectrum and the matrix elements of scalar and axial-vector densities at β=6/g2=5.4, 5.5, 5.6. The lattice update was done using the hybrid Monte Carlo algorithm to include two flavors of dynamical Wilson fermions. We have explored quark masses in the range ms≤mq≤3ms. The results for the spectrum are similar to quenched simulations and mass ratios are consistent with phenomenological heavy-quark models. The results for matrix elements of the scalar density show that the contribution of sea quarks is comparable to that of the valence quarks. This has important implications for the pion-nucleon σ term.
Resumo:
We calculate the kaon B parameter in quenched lattice QCD at beta=6.0 using Wilson fermions at kappa=0.154 and 0.155. We use two kinds of nonlocal (''smeared'') sources for quark propagators to calculate the matrix elements between states of definite momentum. The use of smeared sources yields results with much smaller errors than obtained in previous calculations with Wilson fermions. By combining results for p=(0,0,0) and p=(0,0,1), we show that one can carry out the noperturbative subtraction necessary to remove the dominant lattice artifacts induced by the chiral-symmetry-breaking term in the Wilson action. Our final results are in good agreement with those obtained using staggered fermions. We also present results for B parameters of the DELTAI = 3/2 part of the electromagnetic penguin operators, and preliminary results for B(K) in the presence of two flavors of dynamical quarks.
Resumo:
The solubilities of various solid pollutants in supercritical carbon dioxide were investigated. The intermolecular interactions play a significant role in determining the solubilities of solids in supercritical carbon dioxide. A new model equation was derived by using the concepts of association and activity coefficient model to correlate the solubilities of solids. The model equation combines the association and Wilson activity coefficient models and includes the interaction potentials between the molecules, which are useful in understanding the behavior of the solid solutes in SCCO2. The new model equation involves five adjustable parameters to correlate the solubilities of solids by incorporating the interactions between the molecules. The equation correlated 75 solid systems with an average AARD of around 9%, which was better than the correlations obtained from standard models such as Mendez Santiago-Teja (MT) model and association model. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Natrix clerki Wall, 1925, previously known from its sole holotype and considered a synonym of Amphiesma parallelum (Boulenger, 1890), is resurrected in the genus Amphiesma on the basis of the analysis of morphological variation in 28 specimens of ``Amphiesma parallelum'' auctorum, plus six living, unvouchered specimens discovered in Arunachal Pradesh and Nagaland, India, and one vouchered specimen from Talle Valley in Arunachal Pradesh. Specimens from northeast India (Nagaland), northern Myanmar, and China (Yunnan), previously identified as Amphiesma parallelum either in the literature or in museum's catalogues, are also here referred to A. clerki. The holotype of Amphiesma clerki is redescribed. As a consequence, the definition of Amphiesma parallelum is modified. A. parallelum inhabits the Khasi Hills and Naga Hills in Northeast India, whereas A. clerki has a wider range in the Eastern Himalayas, northern Myanmar and Yunnan (China). Amphiesma clerki differs from A. parallelum by its longer tail, dorsal scales more strongly keeled, scales of the first dorsal scale row strongly keeled vs. smooth, a postocular streak not interrupted at the level of the neck, and a much more vivid pattern on a darker background colour. Characters of species of the Amphiesma parallelum group, i.e. A. clerki, A. parallelum, A. bitaeniatum, A. platyceps and A. sieboldii are compared. A key to this group is provided.
Resumo:
The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between similar to 40,000 and similar to 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of similar to 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of similar to 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.