9 resultados para Weyl

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A continuous procedure is presented for euclideanization of Majorana and Weyl fermions without doubling their degrees of freedom. The Euclidean theory so obtained is SO(4) invariant and Osterwalder-Schrader (OS) positive. This enables us to define a one-complex parameter family of the N=1 supersymmetric Yang-Mills (SSYM) theories which interpolate between the Minkowski and a Euclidean SSYM theory. The interpolating action, and hence the Euclidean action, manifests all the continous symmetries of the original Minkowski space theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article we plan to demonstrate the usefulness of `Gutzmer's formula' in the study of various problems related to the Segal-Bargmann transform. Gutzmer's formula is known in several contexts: compact Lie groups, symmetric spaces of compact and noncompact type, Heisenberg groups and Hermite expansions. We apply Gutzmer's formula to study holomorphic Sobolev spaces, local Peter-Weyl theorems, Paley-Wiener theorems and Poisson semigroups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A one-dimensional arbitrary system with quantum Hamiltonian H(q, p) is shown to acquire the 'geometric' phase gamma (C)=(1/2) contour integral c(Podqo-qodpo) under adiabatic transport q to q+q+qo(t) and p to p+po(t) along a closed circuit C in the parameter space (qo(t), po(t)). The non-vanishing nature of this phase, despite only one degree of freedom (q), is due ultimately to the underlying non-Abelian Weyl group. A physical realisation in which this Berry phase results in a line spread is briefly discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of expressing a general dynamical variable in quantum mechanics as a function of a primitive set of operators is studied from several points of view. In the context of the Heisenberg commutation relation, the Weyl representation for operators and a new Fourier-Mellin representation are related to the Heisenberg group and the groupSL(2,R) respectively. The description of unitary transformations via generating functions is analysed in detail. The relation between functions and ordered functions of noncommuting operators is discussed, and results closely paralleling classical results are obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The method of Wigner distribution functions, and the Weyl correspondence between quantum and classical variables, are extended from the usual kind of canonically conjugate position and momentum operators to the case of an angle and angular momentum operator pair. The sense in which one has a description of quantum mechanics using classical phase‐space language is much clarified by this extension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present talk, we will discuss a six dimensional mass generation for the neutrinos. The SM neutrinos live on a 3-brane and interact via a brane localised mass term with a Weyl singlet neutrino residing in all the six dimensions. We present the physical neutrino mass spectrum and show that the active neutrino mass and the KK masses have a logarithmic cut-off dependence at the tree level. This translates in to a renormalisation group running of n -masses above the KK compactification scale coming from classical effects without any SM particles in the spectrum.This could have effects in neutrinoless double beta decay experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dilaton action in 3 + 1 dimensions plays a crucial role in the proof of the a-theorem. This action arises using Wess-Zumino consistency conditions and crucially relies on the existence of the trace anomaly. Since there are no anomalies in odd dimensions, it is interesting to ask how such an action could arise otherwise. Motivated by this we use the AdS/CFT correspondence to examine both even and odd dimensional conformal field theories. We find that in even dimensions, by promoting the cutoff to a field, one can get an action for this field which coincides with the Wess-Zumino action in flat space. In three dimensions, we observe that by finding an exact Hamilton-Jacobi counterterm, one can find a non-polynomial action which is invariant under global Weyl rescalings. We comment on how this finding is tied up with the F-theorem conjectures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series expansion for Heckman-Opdam hypergeometric functions phi(lambda) is obtained for all lambda is an element of alpha(C)*. As a consequence, estimates for phi(lambda) away from the walls of a Weyl chamber are established. We also characterize the bounded hypergeometric functions and thus prove an analogue of the celebrated theorem of Helgason and Johnson on the bounded spherical functions on a Riemannian symmetric space of the noncompact type. The L-P-theory for the hypergeometric Fourier transform is developed for 0 < p < 2. In particular, an inversion formula is proved when 1 <= p < 2. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluate the contribution of chiral fermions in d = 2, 4, 6, chiral bosons, a chiral gravitino like theory in d = 2 and chiral gravitinos in d = 6 to all the leading parity odd transport coefficients at one loop. This is done by using finite temperature field theory to evaluate the relevant Kubo formulae. For chiral fermions and chiral bosons the relation between the parity odd transport coefficient and the microscopic anomalies including gravitational anomalies agree with that found by using the general methods of hydrodynamics and the argument involving the consistency of the Euclidean vacuum. For the gravitino like theory in d = 2 and chiral gravitinos in d = 6, we show that relation between the pure gravitational anomaly and parity odd transport breaks down. From the perturbative calculation we clearly identify the terms that contribute to the anomaly polynomial, but not to the transport coefficient for gravitinos. We also develop a simple method for evaluating the angular integrals in the one loop diagrams involved in the Kubo formulae. Finally we show that charge diffusion mode of an ideal 2 dimensional Weyl gas in the presence of a finite chemical potential acquires a speed, which is equal to half the speed of light.