7 resultados para Westminster School (London, England)

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem and related earlier work All the above problems involve the passage of a long chain molecule, through a region in space, where the free energy per segment is higher, thus effectively presenting a barrier for the motion of the molecule. This is what we refer to as the Kramers proble...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review here our understanding of the sliding wear phenomenon: some generalities have emerged in the last 50 years of research, these can now be taken as established principles and be used for practical design and maintenance. Other issues related for example to nano-wear, the role of microstructure on wear or mechanism of crack nucleation require renewed efforts, for greater predictivity in wear. The review is based on published literature with examples principally drawn from our work on sliding wear of metals and ceramics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a probabilistic prediction based approach for providing Quality of Service (QoS) to delay sensitive traffic for Internet of Things (IoT). A joint packet scheduling and dynamic bandwidth allocation scheme is proposed to provide service differentiation and preferential treatment to delay sensitive traffic. The scheduler focuses on reducing the waiting time of high priority delay sensitive services in the queue and simultaneously keeping the waiting time of other services within tolerable limits. The scheme uses the difference in probability of average queue length of high priority packets at previous cycle and current cycle to determine the probability of average weight required in the current cycle. This offers optimized bandwidth allocation to all the services by avoiding distribution of excess resources for high priority services and yet guaranteeing the services for it. The performance of the algorithm is investigated using MPEG-4 traffic traces under different system loading. The results show the improved performance with respect to waiting time for scheduling high priority packets and simultaneously keeping tolerable limits for waiting time and packet loss for other services. Crown Copyright (C) 2015 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile Ad hoc Networks (MANETs) are self-organized, infrastructureless, decentralized wireless networks consist of a group of heterogeneous mobile devices. Due to the inherent characteristics of MANE -Ts, such as frequent change of topology, nodes mobility, resource scarcity, lack of central control, etc., makes QoS routing is the hardest task. QoS routing is the task of routing data packets from source to destination depending upon the QoS resource constraints, such as bandwidth, delay, packet loss rate, cost, etc. In this paper, we proposed a novel scheme of providing QoS routing in MANETs by using Emergent Intelligence (El). The El is a group intelligence, which is derived from the periodical interaction among a group of agents and nodes. We logically divide MANET into clusters by centrally located static agent, and in each cluster a mobile agent is deployed. The mobile agent interacts with the nodes, neighboring mobile agents and static agent for collection of QoS resource information, negotiations, finding secure and reliable nodes and finding an optimal QoS path from source to destination. Simulation and analytical results show that the effectiveness of the scheme. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.ore/licenscs/by-nc-nd/4.0/). Peer-review under responsibility of the Conference Program Chairs

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cooperative relaying combined with selection exploits spatial diversity to significantly improve the performance of interference-constrained secondary users in an underlay cognitive radio network. We present a novel and optimal relay selection (RS) rule that minimizes the symbol error probability (SEP) of an average interference-constrained underlay secondary system that uses amplify-and-forward relays. A key point that the rule highlights for the first time is that, for the average interference constraint, the signal-to-interference-plus-noise-ratio (SINR) of the direct source-to-destination (SI)) link affects the choice of the optimal relay. Furthermore, as the SINR increases, the odds that no relay transmits increase. We also propose a simpler, more practical, and near-optimal variant of the optimal rule that requires just one bit of feedback about the state of the SD link to the relays. Compared to the SD-unaware ad hoc RS rules proposed in the literature, the proposed rules markedly reduce the SEP by up to two orders of magnitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The functional source coding problem in which the receiver side information (Has-set) and demands (Want-set) include functions of source messages is studied using row-Latin rectangle. The source transmits encoded messages, called the functional source code, in order to satisfy the receiver's demands. We obtain a minimum length using the row-Latin rectangle. Next, we consider the case of transmission errors and provide a necessary and sufficient condition that a functional source code must satisfy so that the receiver can correctly decode the values of the functions in its Want-set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a distributed sequential algorithm for quick detection of spectral holes in a Cognitive Radio set up. Two or more local nodes make decisions and inform the fusion centre (FC) over a reporting Multiple Access Channel (MAC), which then makes the final decision. The local nodes use energy detection and the FC uses mean detection in the presence of fading, heavy-tailed electromagnetic interference (EMI) and outliers. The statistics of the primary signal, channel gain and the EMI is not known. Different nonparametric sequential algorithms are compared to choose appropriate algorithms to be used at the local nodes and the Fe. Modification of a recently developed random walk test is selected for the local nodes for energy detection as well as at the fusion centre for mean detection. We show via simulations and analysis that the nonparametric distributed algorithm developed performs well in the presence of fading, EMI and outliers. The algorithm is iterative in nature making the computation and storage requirements minimal.