19 resultados para Weight Loss
em Indian Institute of Science - Bangalore - Índia
Resumo:
The photocatalytic and thermal degradations of poly(methyl methacrylate), poly(butyl acrylate), and their copolymers of different compositions were studied. The photocatalytic degradation was investigated in o-dichlorobenzene in the presence of two different catalysts, namely, Degussa P-25 and combustion synthesized nanotitania (CSN-TiO2). The samples were analyzed by using gel permeation chromatography (GPC) to obtain the molecular weight distributions (MWDs) as a function of reaction time. Experimental data indicated that the photodegradation of these polymers occurs by both random and chain end scission. A continuous distribution kinetic model was used to determine the degradation rate coefficients by fitting the experimental data with the model. Both the random and specific rate coefficients of the copolymers decreased with increasing percentage of butyl acrylate (BA). Thermal degradation of the copolymers was investigated by thermo-gravimetry. The normalized weight loss profiles for the copolymers showed that the thermal stability of the copolymers increased with mole percentage of BA in the copolymer (PMMABA). The Czawa method was used to determine the activation energies at different conversions. At low acrylate content in the copolymer, the activation energy depends on conversion, indicating multiple degradation mechanisms. At high acrylate content in the copolymer, the activation energy is independent of conversion, indicating degradation by a one-step mechanism.
Resumo:
Oxidation of zinc sulphide pellets is carried out in the ranges of 600-826°C temperature, 0.3-0.5 porosity and 15-50 minutes of reaction time. An experimental technique is employed to simultaneously determine the rate of weight loss of the solid and conversions of the solid reactant at various levels in the pellet for different reaction times. A structural model is used to explain the experimental results. It is found that the model predicts both the experimental results obtained under various conditions reasonably well.
Resumo:
A novel solid-solution precursor method for the preparation of fine-particle cobaltites at low temperatures has been described. The precursors, hydrazinium metal hydrazine carboxylate hydrates, N2H5M1/3Co2/3(N2H3COO)3 · H2O, where M = Mg, Mn, Fe, Co, Ni, and Zn, decompose in air <250°C to yield corresponding metal cobaltites, MCo2O4. Formation of cobaltites has been confirmed by thermogravimetry (TG) weight loss, IR, and X-ray diffraction. Combustion of the precursor in air yields fine-particle cobaltites with surface areas in the range of 12–115 m2g−1 and particle sizes of 1–40 μm. Low decomposition temperatures of the precursors accompanied by the evolution of large amounts of gases appear to control the particle size of the cobaltites.
Resumo:
Thermal decomposition of ethyl and isopropyl amine perchlorates has been studied by methods such as DTA, TG, isothermal weight loss measurements and the decomposition products have been analyzed in a mass spectrometer. Activation energy values for thermal decomposition have been calculated fromagr-t plots. The proton transfer dissociation mechanism proposed for the thermal decomposition of ammonium perchlorate (AP) has been extended to explain the decomposition products of these twosubstituted amine perchlorates.
Resumo:
Different compositions of poly(methyl methacrylate-co-methyl acrylate) (PMMAMA), poly(methyl methacrylate-co-ethyl acrylate) (PMMAEA) and poly(methyl methacrylate-co-butyl acrylate) (PMMABA) copolymers were synthesized and characterized. The photocatalytic oxidative degradation of all these copolymers were studied in presence of two different catalysts namely Degussa P-25 and combustion synthesized titania using azobis-iso-butyronitrile and benzoyl peroxide as oxidizers. Gel permeation hromatography (GPC) was used to determine the molecular weight distribution of the samples as a function of time. The GPC chromatogram indicated that the photocatalytic oxidative degradation of all these copolymers proceeds by both random and chain end scission.Continuous distribution kinetics was used to develop a model for photocatalytic oxidative degradation considering both random and specific end scission. The degradation rate coefficients were determined by fitting the experimental data with the model. The degradation rate coefficients of the copolymers decreased with increase in the percentage of alkyl acrylate in the copolymer. This indicates that the photocatalytic oxidative stability of the copolymers increased with increasing percentage of alkyl acrylate. From the degradation rate coefficients, it was observed that the photocatalytic oxidative stability follows the order PMMABA > PMMAEA > PMMAMA. The thermal degradation of the copolymers was studied by using thermogravimetric analysis (TGA). The normalized weight loss and differential fractional weight loss profiles indicated that the thermal stability of the copolymer increases with an increase in the percentage of alkyl acrylate and the thermal stability of poly(methyl methacrylate-co-alkyl acrylate)s follows the order PMMAMA > PMMAEA > PMMABA. The observed contrast in the order of photostability and thermal stability of the copolymers was attributed to different mechanisms involved for the scission of polymer chain and formation of different products in both the processes.
Resumo:
Regression ra tes of a hypergolic combination of fuel and oxidiser have been experimentally measured as a function of chamber pressure, mass flux and the percentage component of the hypergolic compound in natural rubber. The hypergolic compound used is difurfurylidene cyclohexanone (DFCH) which is hypergolic with the oxidiser red fuming nitric acid (RFNA) with ignition dela y of 60-70 ms. The data of weight loss versus time is obtained for burn times varying between 5 and 20 seconds. Two methods of correlating the data using mass flux of oxidiser and the total flux of hot gases have shown that index n of the regression law r=aGoxn or r=aGnxn-1 (x the axial distance) is about 0.5 or a little lower and not 0.8 even though the flow through the port is turbulent. It is argued that the reduction of index n is due to heterogeneous reaction between the liquid oxidiser and the hypergolic fuel component on the surface.
Resumo:
The use of fractional-factorial methods in the optimization of porous-carbon electrode structure is discussed with respect to weight-loss of carbon during gas treatment, weight and mixing time of binder, compaction temperature, time and pressure, and pressure of feed gas. The experimental optimization of an air electrode in alkaline solution is described.
Resumo:
The vapour pressures of barium and strontium have been measured by continuous monitoring of the weight loss of Knudsen cells in the temperature range 700�1200 K. The results for strontium agree with those reported in the literature, but the vapour pressure of barium has been found to be considerably lower than the generally accepted value. The experimentally determined pressures are in good agreement with theoretical values obtained using the Gibbs-Bogoliubov first-order variational method.
Resumo:
The application of holographic interferometry to the measurement of the corrosion rate of aluminium in sodium hydroxide is investigated. Details of the fabrication of the corrosion cell and the experimental procedure are given. Thickness loss of aluminium was found for different dissolution times and compared with the conventional weight-loss method using a microbalance.
Resumo:
Thermal decomposition of ethylene diamine diperchlorate (EDDP) has been studied by differential-thermal analysis (DTA), thermogravimetric analysis (TGA), isothermal weight-loss measurements and mass-spectrometric analysis of the decomposition products. It has been observed that EDDP decomposes in two temperature regions. The low-temperature decomposition stops at about 35 to 40 percent weight loss below 250°C. The reason for the low-temperature cessation may be the adsorption of excess ethylene diamine on the crystal surface of EDDP. An overall activation energy of 54 kcal per mole has been calculated for the thermal decomposition of EDDP. Mass-spectrometric analysis shows that the decomposition products are mainly CO2, H2O, HCl and N2. The following stoichiometry has been proposed for the thermal decomposition of EDDP: (−CH2NH3CIO4)2→2CO2O+2HCl+N2
Resumo:
The type of abrasion that the grinding medium experiences inside a ball mill is classified as high stress or grinding abrasion, because the stress levels at the surface of the medium exceed the yield stress of the metal when hard abrasives are crushed. During dry grinding of ores the medium undergoes not only abrasion but also erosion and impact. As all three mechanisms of wear occur simultaneously, it is difficult to follow the individual components of wear. However, it is possible to show that the overall kinetics of wear follows a simple power law of the type w = at(b), where w is the weight loss of the grinding medium for a specified grinding time t and a and b are constants. Experimental data, obtained from dry grinding of quartz for a wide range of times using AISI 52100 steel balls having various microstructures in a laboratory scale batch mill, are fitted to the proposed equation and the wear rate w is calculated from the first derivative of the equation. The mean particle sizes of the quartz charge DBAR corresponding to 50 and 80% retained size are determined by mechanical sieving of the ground product after a grinding time t and thus the relationship between wear rate and particle size of the abrasive is established. It is found that w increases rapidly with DBAR up to some critical size and then increases at a much lower rate.
Resumo:
Studies on ignition and combustion of distillery effluent containing solids consisting of 38 +/- 2% inorganics and 62 +/- 2% of organics (cane sugar derivatives) have been carried out in order to investigate the role of droplet size and ambient temperature in the process of combustion. Experiments were conducted on in liquid droplets of effluent having solids concentration 65% and (2) spheres of died (100% solids) effluent of diameters ranging from 0.5 to 25 mm. These spheres were introduced into a furnace where air temperature ranged from 500 to 1000 degrees C, and they burned with two distinct regimes of combustion-flaming and glowing. The ignition delay of the 65% concentration effluent increases with diameter as in the case of nonvolatile droplets, while that of dried spheres appears to be independent of size. The ignition delay shows Arrhenius dependence on temperature. The flaming combustion involves a weight loss of 50-80%, depending on ambient temperature, and the flaming time is given by t(f) similar to d(0)(2), as in the case of liquid fuel droplets and wood spheres. Char glowing involves weight loss of an additional 10-20%, with glowing time behaving as t(c) similar to d(0)(2) as in the case of wood char, even though the inert content of effluent char is as large as 50% compared to 2-3% in wood char Char combustion has been modeled, and the results of this model compare well with the experimental results.
Role of Li+ ions in corrosion behaviour of 8090 Al-Li alloy and aluminium in pH 12 aqueous solutions
Resumo:
The influence of Li+ ions on the corrosion behaviour of the Al-Li alloy 8090-T851 and of commercially pure aluminium in aqueous solutions at pH 12 was studied by weight loss and electrochemical polarisation methods. The inhibiting role of Li+ was concentration dependent, corrosion rate decreasing lineally with log[Li+] in the concentration range 10(-4)-10(-1) mol L(-1). A change from general to pitting corrosion was evident from scanning election microscopy studies. Polarisation studies revealed that Li+ primarily acts as an anodic inhibitor (passivator). Passive film formation and stability also become more feasible with increasing Li+ concentration. Fitting potential was dependent on the Cl- ion concentration in the solution. Both materials were affected similarly by the presence of Li+ ions, the corrosion rate of the alloy being slightly lower. This is attributed to the lithium in the alloy acting as a source of lithium for passive film formation. (C) 1995 The Institute of Materials.
Resumo:
Heat-up times derived from studies on the ignition characteristics of a few model composite solid propellants, containing polystyrene, carboxy-terminated polybutadiene, plasticised polyvinyl chloride and polyphenol formaldehyde as binders, show that they are directly proportional to the mass of the sample and inversely proportional to the hear flux. Propellant weight-loss prior to ignition and high pressure ignition temperature data on the propellants, ammonium per chlorate, and binders show that the ignition is governed by the gasification of the binder pyrolysis products. The activation energy for the gasification of the pyrolysed polymer products corresponds to their ignition behaviour suggesting that propellant ignition is controlled by the binder.
Resumo:
The dry sliding wear and friction behaviour of A356 Al alloy and its composites containing 10 and 20 vol.% SiC(P) have been studied using pin-on-disc set up. In these tests, A356 Al alloy and its composites are used as disc whereas brake pad was used in the form of pins. Wear tests were carried out at a load of 192 N and the sliding speed was varied from 1 to 5 m/s. Tests were done for a sliding distance of 15 km. The effects of sliding velocity on the wear rate, coefficient of friction and nature of tribolayers formed on discs have been studied. Wear rates of composites as calculated by weight loss method, found to be negative at sliding speed of more than 2 m/s. Worn surfaces of pins and discs have been analyzed using scanning electron microscope. SEM and EDAX analysis of worn surfaces of composite discs showed formation of tribolayers, consisting of mixture of oxides of Al, Si, Cu, Ca, Ba, Mg, and Fe. In these layers, copper and barium content found to be increase with sliding speed in the case of composites. (C) 2011 Elsevier B.V. All rights reserved.