54 resultados para Web Mining

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Encoding protein 3D structures into 1D string using short structural prototypes or structural alphabets opens a new front for structure comparison and analysis. Using the well-documented 16 motifs of Protein Blocks (PBs) as structural alphabet, we have developed a methodology to compare protein structures that are encoded as sequences of PBs by aligning them using dynamic programming which uses a substitution matrix for PBs. This methodology is implemented in the applications available in Protein Block Expert (PBE) server. PBE addresses common issues in the field of protein structure analysis such as comparison of proteins structures and identification of protein structures in structural databanks that resemble a given structure. PBE-T provides facility to transform any PDB file into sequences of PBs. PBE-ALIGNc performs comparison of two protein structures based on the alignment of their corresponding PB sequences. PBE-ALIGNm is a facility for mining SCOP database for similar structures based on the alignment of PBs. Besides, PBE provides an interface to a database (PBE-SAdb) of preprocessed PB sequences from SCOP culled at 95% and of all-against-all pairwise PB alignments at family and superfamily levels. PBE server is freely available at http://bioinformatics.univ-reunion.fr/ PBE/.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today's programming languages are supported by powerful third-party APIs. For a given application domain, it is common to have many competing APIs that provide similar functionality. Programmer productivity therefore depends heavily on the programmer's ability to discover suitable APIs both during an initial coding phase, as well as during software maintenance. The aim of this work is to support the discovery and migration of math APIs. Math APIs are at the heart of many application domains ranging from machine learning to scientific computations. Our approach, called MATHFINDER, combines executable specifications of mathematical computations with unit tests (operational specifications) of API methods. Given a math expression, MATHFINDER synthesizes pseudo-code comprised of API methods to compute the expression by mining unit tests of the API methods. We present a sequential version of our unit test mining algorithm and also design a more scalable data-parallel version. We perform extensive evaluation of MATHFINDER (1) for API discovery, where math algorithms are to be implemented from scratch and (2) for API migration, where client programs utilizing a math API are to be migrated to another API. We evaluated the precision and recall of MATHFINDER on a diverse collection of math expressions, culled from algorithms used in a wide range of application areas such as control systems and structural dynamics. In a user study to evaluate the productivity gains obtained by using MATHFINDER for API discovery, the programmers who used MATHFINDER finished their programming tasks twice as fast as their counterparts who used the usual techniques like web and code search, IDE code completion, and manual inspection of library documentation. For the problem of API migration, as a case study, we used MATHFINDER to migrate Weka, a popular machine learning library. Overall, our evaluation shows that MATHFINDER is easy to use, provides highly precise results across several math APIs and application domains even with a small number of unit tests per method, and scales to large collections of unit tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sequence-structure correlation studies are important in deciphering the relationships between various structural aspects, which may shed light on the protein-folding problem. The first step of this process is the prediction of secondary structure for a protein sequence of unknown three-dimensional structure. To this end, a web server has been created to predict the consensus secondary structure using well known algorithms from the literature. Furthermore, the server allows users to see the occurrence of predicted secondary structural elements in other structure and sequence databases and to visualize predicted helices as a helical wheel plot. The web server is accessible at http://bioserver1.physics.iisc.ernet.in/cssp/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existing internet computing resource, Biomolecules Segment Display Device (BSDD), has been updated with several additional useful features. An advanced option is provided to superpose the structural motifs obtained from a search on the Protein Data Bank (PDB) in order to see if the three-dimensional structures adopted by identical or similar sequence motifs are the same. Furthermore, the options to display structural aspects like inter- and intra-molecular interactions, ion-pairs, disulphide bonds, etc. have been provided.The updated resource is interfaced with an up-to-date copy of the public domain PDB as well as 25 and 90% non-redundant protein structures. Further, users can upload the three-dimensional atomic coordinates (PDB format) from the client machine. A free molecular graphics program, JMol, is interfaced with it to display the three-dimensional structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we first describe a framework to model the sponsored search auction on the web as a mechanism design problem. Using this framework, we describe two well-known mechanisms for sponsored search auction-Generalized Second Price (GSP) and Vickrey-Clarke-Groves (VCG). We then derive a new mechanism for sponsored search auction which we call optimal (OPT) mechanism. The OPT mechanism maximizes the search engine's expected revenue, while achieving Bayesian incentive compatibility and individual rationality of the advertisers. We then undertake a detailed comparative study of the mechanisms GSP, VCG, and OPT. We compute and compare the expected revenue earned by the search engine under the three mechanisms when the advertisers are symmetric and some special conditions are satisfied. We also compare the three mechanisms in terms of incentive compatibility, individual rationality, and computational complexity. Note to Practitioners-The advertiser-supported web site is one of the successful business models in the emerging web landscape. When an Internet user enters a keyword (i.e., a search phrase) into a search engine, the user gets back a page with results, containing the links most relevant to the query and also sponsored links, (also called paid advertisement links). When a sponsored link is clicked, the user is directed to the corresponding advertiser's web page. The advertiser pays the search engine in some appropriate manner for sending the user to its web page. Against every search performed by any user on any keyword, the search engine faces the problem of matching a set of advertisers to the sponsored slots. In addition, the search engine also needs to decide on a price to be charged to each advertiser. Due to increasing demands for Internet advertising space, most search engines currently use auction mechanisms for this purpose. These are called sponsored search auctions. A significant percentage of the revenue of Internet giants such as Google, Yahoo!, MSN, etc., comes from sponsored search auctions. In this paper, we study two auction mechanisms, GSP and VCG, which are quite popular in the sponsored auction context, and pursue the objective of designing a mechanism that is superior to these two mechanisms. In particular, we propose a new mechanism which we call the OPT mechanism. This mechanism maximizes the search engine's expected revenue subject to achieving Bayesian incentive compatibility and individual rationality. Bayesian incentive compatibility guarantees that it is optimal for each advertiser to bid his/her true value provided that all other agents also bid their respective true values. Individual rationality ensures that the agents participate voluntarily in the auction since they are assured of gaining a non-negative payoff by doing so.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the functioning of a neural system in terms of its underlying circuitry is an important problem in neuroscience. Recent d evelopments in electrophysiology and imaging allow one to simultaneously record activities of hundreds of neurons. Inferring the underlying neuronal connectivity patterns from such multi-neuronal spike train data streams is a challenging statistical and computational problem. This task involves finding significant temporal patterns from vast amounts of symbolic time series data. In this paper we show that the frequent episode mining methods from the field of temporal data mining can be very useful in this context. In the frequent episode discovery framework, the data is viewed as a sequence of events, each of which is characterized by an event type and its time of occurrence and episodes are certain types of temporal patterns in such data. Here we show that, using the set of discovered frequent episodes from multi-neuronal data, one can infer different types of connectivity patterns in the neural system that generated it. For this purpose, we introduce the notion of mining for frequent episodes under certain temporal constraints; the structure of these temporal constraints is motivated by the application. We present algorithms for discovering serial and parallel episodes under these temporal constraints. Through extensive simulation studies we demonstrate that these methods are useful for unearthing patterns of neuronal network connectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of Acidithiobacillus group of bacteria in acid generation and heavy metal dissolution was studied with relevance to some Indian mines. Microorganisms implicated in acid generation such as Acidithiobacillus Acidithicibacillus thiooxidans and Leptospirillum ferrooxidans were isolated from abandoned mines, waste rocks and tailing dumps. Arsenite oxidizing Thiomonas and Bacillus group of bacteria were isolated and their ability to oxidize As (111) to As (V) established. Mine isolated Sulfate reducing bacteria were used to remove dissolved copper, zinc, iron and arsenic from solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identification of sequence (amino acids or nucleotides) motifs in a particular order in biological sequences has proved to be of interest. This paper describes a computing server, SSMBS, which can locate anddisplay the occurrences of user-defined biologically important sequence motifs (a maximum of five) present in a specific order in protein and nucleotide sequences. While the server can efficiently locate motifs specified using regular expressions, it can also find occurrences of long and complex motifs. The computation is carried out by an algorithm developed using the concepts of quantifiers in regular expressions. The web server is available to users around the clock at http://dicsoft1.physics.iisc.ernet.in/ssmbs/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data mining involves nontrivial process of extracting knowledge or patterns from large databases. Genetic Algorithms are efficient and robust searching and optimization methods that are used in data mining. In this paper we propose a Self-Adaptive Migration Model GA (SAMGA), where parameters of population size, the number of points of crossover and mutation rate for each population are adaptively fixed. Further, the migration of individuals between populations is decided dynamically. This paper gives a mathematical schema analysis of the method stating and showing that the algorithm exploits previously discovered knowledge for a more focused and concentrated search of heuristically high yielding regions while simultaneously performing a highly explorative search on the other regions of the search space. The effective performance of the algorithm is then shown using standard testbed functions and a set of actual classification datamining problems. Michigan style of classifier was used to build the classifier and the system was tested with machine learning databases of Pima Indian Diabetes database, Wisconsin Breast Cancer database and few others. The performance of our algorithm is better than others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Business processes and application functionality are becoming available as internal web services inside enterprise boundaries as well as becoming available as commercial web services from enterprise solution vendors and web services marketplaces. Typically there are multiple web service providers offering services capable of fulfilling a particular functionality, although with different Quality of Service (QoS). Dynamic creation of business processes requires composing an appropriate set of web services that best suit the current need. This paper presents a novel combinatorial auction approach to QoS aware dynamic web services composition. Such an approach would enable not only stand-alone web services but also composite web services to be a part of a business process. The combinatorial auction leads to an integer programming formulation for the web services composition problem. An important feature of the model is the incorporation of service level agreements. We describe a software tool QWESC for QoS-aware web services composition based on the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classification of large datasets is a challenging task in Data Mining. In the current work, we propose a novel method that compresses the data and classifies the test data directly in its compressed form. The work forms a hybrid learning approach integrating the activities of data abstraction, frequent item generation, compression, classification and use of rough sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classification of large datasets is a challenging task in Data Mining. In the current work, we propose a novel method that compresses the data and classifies the test data directly in its compressed form. The work forms a hybrid learning approach integrating the activities of data abstraction, frequent item generation, compression, classification and use of rough sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic identification of software faults has enormous practical significance. This requires characterizing program execution behavior and the use of appropriate data mining techniques on the chosen representation. In this paper, we use the sequence of system calls to characterize program execution. The data mining tasks addressed are learning to map system call streams to fault labels and automatic identification of fault causes. Spectrum kernels and SVM are used for the former while latent semantic analysis is used for the latter The techniques are demonstrated for the intrusion dataset containing system call traces. The results show that kernel techniques are as accurate as the best available results but are faster by orders of magnitude. We also show that latent semantic indexing is capable of revealing fault-specific features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Owing to high evolutionary divergence, it is not always possible to identify distantly related protein domains by sequence search techniques. Intermediate sequences possess sequence features of more than one protein and facilitate detection of remotely related proteins. We have demonstrated recently the employment of Cascade PSI-BLAST where we perform PSI-BLAST for many 'generations', initiating searches from new homologues as well. Such a rigorous propagation through generations of PSI-BLAST employs effectively the role of intermediates in detecting distant similarities between proteins. This approach has been tested on a large number of folds and its performance in detecting superfamily level relationships is similar to 35% better than simple PSI-BLAST searches. We present a web server for this search method that permits users to perform Cascade PSI-BLAST searches against the Pfam, SCOP and SwissProt databases. The URL for this server is http://crick.mbu.iisc.ernet.in/similar to CASCADE/CascadeBlast.html.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land cover (LC) changes play a major role in global as well as at regional scale patterns of the climate and biogeochemistry of the Earth system. LC information presents critical insights in understanding of Earth surface phenomena, particularly useful when obtained synoptically from remote sensing data. However, for developing countries and those with large geographical extent, regular LC mapping is prohibitive with data from commercial sensors (high cost factor) of limited spatial coverage (low temporal resolution and band swath). In this context, free MODIS data with good spectro-temporal resolution meet the purpose. LC mapping from these data has continuously evolved with advances in classification algorithms. This paper presents a comparative study of two robust data mining techniques, the multilayer perceptron (MLP) and decision tree (DT) on different products of MODIS data corresponding to Kolar district, Karnataka, India. The MODIS classified images when compared at three different spatial scales (at district level, taluk level and pixel level) shows that MLP based classification on minimum noise fraction components on MODIS 36 bands provide the most accurate LC mapping with 86% accuracy, while DT on MODIS 36 bands principal components leads to less accurate classification (69%).