85 resultados para Weaning phase of mechanical ventilation

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nano-indentation studies have been undertaken on bulk Ge15Te85-xSix glasses (0 <= x <= 9), to estimate hardness, H and elastic modulus, E. It is found that E and H increase initially with the increase in the atomic percent of Si. Further, a plateau is seen in the composition dependence of E and H in the composition range 2 <= x <= 6. It is also seen that the addition of up to 2 at% Si increases the density rho of the glass considerably; however, further additions of Si lead to a near linear reduction in rho, in the range 2 <= x <= 6. Beyond x=6, rho increases again with Si content. The variation of molar volume V-m brings out a more fascinating picture. A plateau is seen in the intermediate phase suggesting that the molecular structure of the glasses is adapting to keep the count of constraints fixed in this particular phase. The observed variations in mechanical properties are associated with the Boolchand's intermediate phase in the present glassy system, in the composition range 2 <= x <= 6, suggested earlier from calorimetric and electrical switching studies. The present results reveal rather directly the existence of the intermediate phase in elastic and plastic properties of chalcogenide glasses. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate quantitative optical property and elastic property imaging from ultrasound assisted optical tomography data. The measurements, which are modulation depth M and phase phi of the speckle pattern, are shown to be sensitively dependent on these properties of the object in the insonified focal region of the ultrasound (US) transducer. We demonstrate that Young's modulus (E) can be recovered from the resonance observed in M versus omega (the US frequency) plots and optical absorption (mu(a)) and scattering (mu(s)) coefficients from the measured differential phase changes. All experimental observations are verified also using Monte Carlo simulations. (c) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). DOI: 10.1117/1.JBO.17.10.101507]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, WC-12Co coatings were deposited by detonation-spraying technique using conventional and nanostructured WC-12Co feedstock at four different oxy/fuel ratios (OF ratio). The coatings exhibited the presence of phases like W2C and W due to the decarburization of the WC phase, and the proportions of these phases were higher in the nano WC-12Co coatings compared with conventional WC-12Co coatings. Coating hardness and fracture toughness were measured. The tribological performance of coatings was examined under dry sand rubber wheel abrasion wear, and solid particle erosion wear conditions. The mechanical and wear properties of coatings were influenced by degree of decarburization and more so in the case of nanostructured WC-Co coatings. The results indicate that the extent of decarburization has a substantial influence on the elastic modulus of the coating which in turn is related to the extent of intersplat cracking of the coating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conceptual design involves identification of required functions of the intended design, generation of concepts to fulfill these functions, and evaluation of these concepts to select the most promising ones for further development. The focus of this paper is the second phase-concept generation, in which a challenge has been to develop possible physical embodiments to offer designers for exploration and evaluation. This paper investigates the issue of how to transform and thus synthesise possible generic physical embodiments and reports an implemented method that could automatically generate these embodiments. In this paper, a method is proposed to transform a variety of possible initial solutions to a design problem into a set of physical solutions that are described in terms of abstraction of mechanical movements. The underlying principle of this method is to make it possible to link common attributes between a specific abstract representation and its possible physical objects. For a given input, this method can produce a set of concepts in terms of their generic physical embodiments. The method can be used to support designers to start with a given input-output function and systematically search for physical objects for design consideration in terms of simplified functional, spatial, and mechanical movement requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Taylor coefficients c and d of the EM form factor of the pion are constrained using analyticity, knowledge of the phase of the form factor in the time-like region, 4m(pi)(2) <= t <= t(in) and its value at one space-like point, using as input the (g - 2) of the muon. This is achieved using the technique of Lagrange multipliers, which gives a transparent expression for the corresponding bounds. We present a detailed study of the sensitivity of the bounds to the choice of time-like phase and errors present in the space-like data, taken from recent experiments. We find that our results constrain c stringently. We compare our results with those in the literature and find agreement with the chiral perturbation-theory results for c. We obtain d similar to O(10) GeV-6 when c is set to the chiral perturbation-theory values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolution of crystallographic texture in the orthorhombic phase of a two-phase alloy Ti–22Al–25Nb (at%), consisting of orthorhombic (O) and bcc (β/B2) phases, was studied. The material was subjected to deformation in two-phase field as well as in the single β phase field. The resulting evolution of microstructure and crystallographic texture were recorded using scanning electron microscopy and X-ray diffraction. The orthorhombic phase underwent change in morphology (from platelets to equiaxed) on rolling in the two-phase field with the texture getting sharper with the amount of deformation. Rolling above β transus temperature led to hot deformation of single β phase microstructure and its subsequent cooling produced transformed coarse platelets of orthorhombic phase with texture in orientation relation with the high temperature deformed β phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the inverse problem associated with the propagation of the field autocorrelation of light through a highly scattering object like tissue. In the first part of the work, we reconstructed the optical absorption coefficient mu(u) and particle diffusion coefficient D-B from simulated measurements which are integrals of a quantity computed from the measured intensity and intensity autocorrelation g(2)(tau) at the boundary. In the second part we recover the mean square displacement (MSD) distribution of particles in an inhomogeneous object from the sampled g(2)(tau) measure on the boundary. From the MSD, we compute the storage and loss moduli distributions in the object. We have devised computationally easy methods to construct the sensitivity matrices which are used in the iterative reconstruction algorithms for recovering these parameters from the measurements. The results of the reconstruction of mu(a), D-B, MSD and the viscoelastic parameters, which are presented, show reasonable good position and quantitative accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors examine the critical divergence of the low-frequency conductivity of the noninteracting Fermi glass and interacting electron glass models of the insulating phase of a disordered system as the metallic phase is approached. Results for the two are found to be rather different, which can be tested experimentally. In particular, for the electron glass, there exists a nonvanishing contribution to the dielectric constants from the low-frequency (hopping) conductivity even at low temperatures, which scales with the high-frequency (optical) contribution, and diverges with the same exponent at the insulator-metal transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study the phonon-induced exciton-exciton interaction. It is found that the interaction can be attractive under certain conditions. Taking into account this attractive interaction, the pairing of excitons with opposite momenta is studied and the excitation spectrum determined. The results are similar to a system of bosons. There appears to be some possibility of superfluid behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GERMINATION transfers a metabolically inert embryo into an active state of growth and development. The presence of conserved mRNAs has been demonstrated in different species of eggs and seeds1–4. In rice embryos, germination was shown to be independent of the synthesis of RNA up to 18–24 h after the start of imbibition5, although RNA synthesis was detected as early as 9 h after the start of imbibition. In this report, the sequence of the transcriptional events taking place during the early phase of the germination of rice embryos are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental investigation into the ambient temperature, load-controlled tension�tension fatigue behavior of a martensitic Nitinol shape memory alloy (SMA) was conducted. Fatigue life for several stress levels spanning the critical stress for detwinning was determined and compared with that obtained on an alloy similar in composition but in the austenitic state at room temperature. Results show that the fatigue life of the pseudo-plastic alloy is superior to superelastic shape memory alloy. The stress�strain hysteretic response, monitored throughout the fatigue loading, reveals progressive strain accumulation with the cyclic loading. In addition, the area of hysteresis and recoverable and frictional energies were found to decrease with increasing number of fatigue cycles. Post-mortem characterization of the fatigued specimens through calorimetry and fractography was conducted in order to get further insight into the fatigue micromechanisms. These results are discussed in terms of reversible and irreversible microstructural changes that take place during cyclic loading. Aspects associated with self-heating of martensitic alloy undergoing high frequency stress cycling are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments were conducted in water and wind tunnels on spheres in the Reynolds number range 6 x 10(3) to 6.5 x 10(5) to study the effect of natural ventilation on the boundary layer separation and near-wake Vortex shedding characteristics. In the subcritical range of Re (<2 x 10(5)), ventilation caused a marginal downstream shift in the location of laminar boundary layer separation; there was only a small change in the vortex shedding frequency. In the supercritical range (Re > 4 x 10(5)), ventilation caused a downstream shift in the mean locations of boundary layer separation and reattachment; these lines showed significant axisymmetry in the presence of venting. No distinct vortex shedding frequency was found. Instead, a dramatic reduction occurred in the wake unsteadiness at all frequencies. The reduction of wake unsteadiness is consistent with the reduction in total drag already reported. Based on the present results and those reported earlier, the effects of natural ventilation on the flow past a sphere can be categorized in two broad regimes, viz., weak and strong interaction regimes. In the weak interaction regime (subcritical Re), the broad features of the basic sphere are largely unaltered despite the large addition of mass in the near wake. Strong interaction is promoted by the closer proximity of the inner and outer shear layers at supercritical Re. This results in a modified and steady near-wake flow, characterized by reduced unsteadiness and small drag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We offer a technique, motivated by feedback control and specifically sliding mode control, for the simulation of differential-algebraic equations (DAEs) that describe common engineering systems such as constrained multibody mechanical structures and electric networks. Our algorithm exploits the basic results from sliding mode control theory to establish a simulation environment that then requires only the most primitive of numerical solvers. We circumvent the most important requisite for the conventionalsimulation of DAEs: the calculation of a set of consistent initial conditions. Our algorithm, which relies on the enforcement and occurrence of sliding mode, will ensure that the algebraic equation is satisfied by the dynamic system even for inconsistent initial conditions and for all time thereafter. [DOI:10.1115/1.4001904]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal reactivities of ammonium perchlorate (AP) pressed at 1500 kg cm–2 for various dwell times ranging from 0 to 45 min have been investigated. Reactivity of AP is observed to (a) increase with increase of dwell time up to 15 min and (b) decrease for the compacts obtained at higher dwell times. X-ray diffraction profiles of the compacts indicated a broadening up to 15 min dwell time and a narrowing thereafter. The increase in the reactivity has been attributed to the increase in the number of gross imperfections and plastic deformation of particles. The decrease in the reactivity is explained in terms of recrystallization after plastic deformation. Local heating is shown to exist during compaction though its macroscopic effect is insignificant during compaction of AP.